Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from datasets import load_dataset
|
3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
4 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Load datasets
|
8 |
+
nsfw_datasets = [
|
9 |
+
load_dataset("aifeifei798/DPO_Pairs-Roleplay-NSFW"),
|
10 |
+
load_dataset("Maxx0/sexting-nsfw-adultconten"),
|
11 |
+
load_dataset("QuietImpostor/Claude-3-Opus-Claude-3.5-Sonnnet-9k"),
|
12 |
+
load_dataset("HuggingFaceTB/everyday-conversations-llama3.1-2k"),
|
13 |
+
load_dataset("Chadgpt-fam/sexting_dataset")
|
14 |
+
]
|
15 |
+
|
16 |
+
# Prepare all texts from datasets
|
17 |
+
all_texts = []
|
18 |
+
for dataset in nsfw_datasets:
|
19 |
+
for split in dataset.keys():
|
20 |
+
if 'text' in dataset[split].features:
|
21 |
+
all_texts.extend(dataset[split]['text'])
|
22 |
+
elif 'content' in dataset[split].features:
|
23 |
+
all_texts.extend(dataset[split]['content'])
|
24 |
+
|
25 |
+
# Create TF-IDF vectorizer
|
26 |
+
vectorizer = TfidfVectorizer()
|
27 |
+
tfidf_matrix = vectorizer.fit_transform(all_texts)
|
28 |
+
|
29 |
+
def find_best_description(input_text):
|
30 |
+
input_vector = vectorizer.transform([input_text])
|
31 |
+
similarities = cosine_similarity(input_vector, tfidf_matrix)
|
32 |
+
most_similar_index = np.argmax(similarities)
|
33 |
+
return all_texts[most_similar_index]
|
34 |
+
|
35 |
+
def generate_text(input_text):
|
36 |
+
return find_best_description(input_text)
|
37 |
+
|
38 |
+
# Create Gradio interface
|
39 |
+
iface = gr.Interface(
|
40 |
+
fn=generate_text,
|
41 |
+
inputs=gr.Textbox(label="Enter text to describe"),
|
42 |
+
outputs="text",
|
43 |
+
title="NSFW Text Descriptor",
|
44 |
+
description="Enter text to find the best description from NSFW datasets.",
|
45 |
+
allow_flagging="never"
|
46 |
+
)
|
47 |
+
|
48 |
+
# Launch the app
|
49 |
+
if __name__ == "__main__":
|
50 |
+
iface.launch()
|