File size: 16,996 Bytes
df5f85b bc9a053 df5f85b bc9a053 df5f85b bc9a053 df5f85b bc9a053 9cf7097 bc9a053 9cf7097 bc9a053 df5f85b bc9a053 df5f85b bc9a053 df5f85b bc9a053 df5f85b bc9a053 df5f85b bc9a053 df5f85b bc9a053 df5f85b bc9a053 df5f85b bc9a053 df5f85b bc9a053 df5f85b bc9a053 df5f85b bc9a053 df5f85b bc9a053 df5f85b bc9a053 df5f85b 5d63d86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import os
import torch
import gradio as gr
import numpy as np
import soundfile as sf
import librosa
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
VitsModel,
AutoProcessor,
AutoModelForCTC,
WhisperProcessor,
WhisperForConditionalGeneration
)
from typing import Optional, Tuple, Dict, List
class TalklasTranslator:
"""
Speech-to-Speech translation pipeline for Philippine languages.
Uses MMS/Whisper for STT, NLLB for MT, and MMS for TTS with pitch-shifting for voice gender.
"""
LANGUAGE_MAPPING = {
"English": "eng",
"Tagalog": "tgl",
"Cebuano": "ceb",
"Ilocano": "ilo",
"Waray": "war",
"Pangasinan": "pag"
}
NLLB_LANGUAGE_CODES = {
"eng": "eng_Latn",
"tgl": "tgl_Latn",
"ceb": "ceb_Latn",
"ilo": "ilo_Latn",
"war": "war_Latn",
"pag": "pag_Latn"
}
def __init__(
self,
source_lang: str = "eng",
target_lang: str = "tgl",
device: Optional[str] = None
):
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.source_lang = source_lang
self.target_lang = target_lang
self.sample_rate = 16000
print(f"Initializing Talklas Translator on {self.device}")
# Initialize models
self._initialize_stt_model()
self._initialize_mt_model()
self._initialize_tts_model()
def _initialize_stt_model(self):
"""Initialize speech-to-text model with fallback to Whisper"""
try:
print("Loading STT model...")
try:
# Try loading MMS model first
self.stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
self.stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
# Set language if available
if self.source_lang in self.stt_processor.tokenizer.vocab.keys():
self.stt_processor.tokenizer.set_target_lang(self.source_lang)
self.stt_model.load_adapter(self.source_lang)
print(f"Loaded MMS STT model for {self.source_lang}")
else:
print(f"Language {self.source_lang} not in MMS, using default")
except Exception as mms_error:
print(f"MMS loading failed: {mms_error}")
# Fallback to Whisper
print("Loading Whisper as fallback...")
self.stt_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
self.stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
print("Loaded Whisper STT model")
self.stt_model.to(self.device)
except Exception as e:
print(f"STT model initialization failed: {e}")
raise RuntimeError("Could not initialize STT model")
def _initialize_mt_model(self):
"""Initialize machine translation model"""
try:
print("Loading NLLB Translation model...")
self.mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
self.mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
self.mt_model.to(self.device)
print("NLLB Translation model loaded")
except Exception as e:
print(f"MT model initialization failed: {e}")
raise
def _initialize_tts_model(self):
"""Initialize text-to-speech model"""
try:
print("Loading TTS model...")
try:
self.tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
self.tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
print(f"Loaded TTS model for {self.target_lang}")
except Exception as tts_error:
print(f"Target language TTS failed: {tts_error}")
print("Falling back to English TTS")
self.tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
self.tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
self.tts_model.to(self.device)
except Exception as e:
print(f"TTS model initialization failed: {e}")
raise
def update_languages(self, source_lang: str, target_lang: str) -> str:
"""Update languages and reinitialize models if needed"""
if source_lang == self.source_lang and target_lang == self.target_lang:
return "Languages already set"
self.source_lang = source_lang
self.target_lang = target_lang
# Only reinitialize models that depend on language
self._initialize_stt_model()
self._initialize_tts_model()
return f"Languages updated to {source_lang} → {target_lang}"
def speech_to_text(self, audio_path: str) -> str:
"""Convert speech to text using loaded STT model"""
try:
waveform, sample_rate = sf.read(audio_path)
if sample_rate != 16000:
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
inputs = self.stt_processor(
waveform,
sampling_rate=16000,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
if isinstance(self.stt_model, WhisperForConditionalGeneration): # Whisper model
generated_ids = self.stt_model.generate(**inputs)
transcription = self.stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
else: # MMS model (Wav2Vec2ForCTC)
logits = self.stt_model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = self.stt_processor.batch_decode(predicted_ids)[0]
return transcription
except Exception as e:
print(f"Speech recognition failed: {e}")
raise RuntimeError("Speech recognition failed")
def translate_text(self, text: str) -> str:
"""Translate text using NLLB model"""
try:
source_code = self.NLLB_LANGUAGE_CODES[self.source_lang]
target_code = self.NLLB_LANGUAGE_CODES[self.target_lang]
self.mt_tokenizer.src_lang = source_code
inputs = self.mt_tokenizer(text, return_tensors="pt").to(self.device)
with torch.no_grad():
generated_tokens = self.mt_model.generate(
**inputs,
forced_bos_token_id=self.mt_tokenizer.convert_tokens_to_ids(target_code),
max_length=448
)
return self.mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
except Exception as e:
print(f"Translation failed: {e}")
raise RuntimeError("Text translation failed")
def text_to_speech(self, text: str, voice_gender: str = "neutral") -> Tuple[int, np.ndarray]:
"""Convert text to speech with optional pitch-shifting for voice gender"""
try:
inputs = self.tts_tokenizer(text, return_tensors="pt").to(self.device)
with torch.no_grad():
output = self.tts_model(**inputs)
speech = output.waveform.cpu().numpy().squeeze()
# Apply pitch-shifting based on voice_gender
if voice_gender.lower() == "female":
# Increase pitch (e.g., +4 semitones for a more traditionally feminine voice)
speech = librosa.effects.pitch_shift(speech, sr=self.tts_model.config.sampling_rate, n_steps=1)
elif voice_gender.lower() == "male":
# Decrease pitch (e.g., -4 semitones for a more traditionally masculine voice)
speech = librosa.effects.pitch_shift(speech, sr=self.tts_model.config.sampling_rate, n_steps=-2)
# Convert to 16-bit PCM
speech = (speech * 32767).astype(np.int16)
return self.tts_model.config.sampling_rate, speech
except Exception as e:
print(f"Speech synthesis failed: {e}")
raise RuntimeError("Speech synthesis failed")
def translate_speech(self, audio_path: str, voice_gender: str = "neutral") -> Dict:
"""Full speech-to-speech translation with voice gender option"""
try:
source_text = self.speech_to_text(audio_path)
translated_text = self.translate_text(source_text)
sample_rate, audio = self.text_to_speech(translated_text, voice_gender)
return {
"source_text": source_text,
"translated_text": translated_text,
"output_audio": (sample_rate, audio),
"performance": "Translation successful"
}
except Exception as e:
return {
"source_text": "Error",
"translated_text": "Error",
"output_audio": (16000, np.zeros(1000, dtype=np.int16)),
"performance": f"Error: {str(e)}"
}
def translate_text_only(self, text: str, voice_gender: str = "neutral") -> Dict:
"""Text-to-speech translation with voice gender option"""
try:
translated_text = self.translate_text(text)
sample_rate, audio = self.text_to_speech(translated_text, voice_gender)
return {
"source_text": text,
"translated_text": translated_text,
"output_audio": (sample_rate, audio),
"performance": "Translation successful"
}
except Exception as e:
return {
"source_text": text,
"translated_text": "Error",
"output_audio": (16000, np.zeros(1000, dtype=np.int16)),
"performance": f"Error: {str(e)}"
}
class TranslatorSingleton:
_instance = None
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = TalklasTranslator()
return cls._instance
def process_audio(audio_path, source_lang, target_lang, voice_gender):
"""Process audio through the full translation pipeline with voice gender"""
# Validate input
if not audio_path:
return None, "No audio provided", "No translation available", "Please provide audio input"
# Update languages
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
translator = TranslatorSingleton.get_instance()
status = translator.update_languages(source_code, target_code)
# Process the audio
results = translator.translate_speech(audio_path, voice_gender)
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
def process_text(text, source_lang, target_lang, voice_gender):
"""Process text through the translation pipeline with voice gender"""
# Validate input
if not text:
return None, "No text provided", "No translation available", "Please provide text input"
# Update languages
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
translator = TranslatorSingleton.get_instance()
status = translator.update_languages(source_code, target_code)
# Process the text
results = translator.translate_text_only(text, voice_gender)
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
def create_gradio_interface():
"""Create and launch Gradio interface with voice gender selection"""
# Define language options
languages = list(TalklasTranslator.LANGUAGE_MAPPING.keys())
voice_genders = ["Neutral", "Male", "Female"]
# Define the interface
demo = gr.Blocks(title="Talklas - Speech & Text Translation")
with demo:
gr.Markdown("# Talklas: Speech-to-Speech Translation System")
gr.Markdown("### Translate between Philippine Languages and English")
with gr.Row():
with gr.Column():
source_lang = gr.Dropdown(
choices=languages,
value="English",
label="Source Language"
)
target_lang = gr.Dropdown(
choices=languages,
value="Tagalog",
label="Target Language"
)
voice_gender = gr.Dropdown(
choices=voice_genders,
value="Neutral",
label="Voice Gender"
)
language_status = gr.Textbox(label="Language Status")
update_btn = gr.Button("Update Languages")
with gr.Tabs():
with gr.TabItem("Audio Input"):
with gr.Row():
with gr.Column():
gr.Markdown("### Audio Input")
audio_input = gr.Audio(
type="filepath",
label="Upload Audio File"
)
audio_translate_btn = gr.Button("Translate Audio", variant="primary")
with gr.Column():
gr.Markdown("### Output")
audio_output = gr.Audio(
label="Translated Speech",
type="numpy",
autoplay=True
)
with gr.TabItem("Text Input"):
with gr.Row():
with gr.Column():
gr.Markdown("### Text Input")
text_input = gr.Textbox(
label="Enter text to translate",
lines=3
)
text_translate_btn = gr.Button("Translate Text", variant="primary")
with gr.Column():
gr.Markdown("### Output")
text_output = gr.Audio(
label="Translated Speech",
type="numpy",
autoplay=True
)
with gr.Row():
with gr.Column():
source_text = gr.Textbox(label="Source Text")
translated_text = gr.Textbox(label="Translated Text")
performance_info = gr.Textbox(label="Performance Metrics")
# Set up events
update_btn.click(
lambda source_lang, target_lang: TranslatorSingleton.get_instance().update_languages(
TalklasTranslator.LANGUAGE_MAPPING[source_lang],
TalklasTranslator.LANGUAGE_MAPPING[target_lang]
),
inputs=[source_lang, target_lang],
outputs=[language_status]
)
# Audio translate button click
audio_translate_btn.click(
process_audio,
inputs=[audio_input, source_lang, target_lang, voice_gender],
outputs=[audio_output, source_text, translated_text, performance_info]
).then(
None,
None,
None,
js="""() => {
const audioElements = document.querySelectorAll('audio');
if (audioElements.length > 0) {
const lastAudio = audioElements[audioElements.length - 1];
lastAudio.play().catch(error => {
console.warn('Autoplay failed:', error);
alert('Audio may require user interaction to play');
});
}
}"""
)
# Text translate button click
text_translate_btn.click(
process_text,
inputs=[text_input, source_lang, target_lang, voice_gender],
outputs=[text_output, source_text, translated_text, performance_info]
).then(
None,
None,
None,
js="""() => {
const audioElements = document.querySelectorAll('audio');
if (audioElements.length > 0) {
const lastAudio = audioElements[audioElements.length - 1];
lastAudio.play().catch(error => {
console.warn('Autoplay failed:', error);
alert('Audio may require user interaction to play');
});
}
}"""
)
return demo
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(share=True, debug=True) |