Updated app.py to create a shareable link
Browse files
app.py
CHANGED
@@ -1,418 +1,418 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import gradio as gr
|
4 |
-
import numpy as np
|
5 |
-
import soundfile as sf
|
6 |
-
from transformers import (
|
7 |
-
AutoModelForSeq2SeqLM,
|
8 |
-
AutoTokenizer,
|
9 |
-
VitsModel,
|
10 |
-
AutoProcessor,
|
11 |
-
AutoModelForCTC,
|
12 |
-
WhisperProcessor,
|
13 |
-
WhisperForConditionalGeneration
|
14 |
-
)
|
15 |
-
from typing import Optional, Tuple, Dict, List
|
16 |
-
|
17 |
-
class TalklasTranslator:
|
18 |
-
"""
|
19 |
-
Speech-to-Speech translation pipeline for Philippine languages.
|
20 |
-
Uses MMS/Whisper for STT, NLLB for MT, and MMS for TTS.
|
21 |
-
"""
|
22 |
-
|
23 |
-
LANGUAGE_MAPPING = {
|
24 |
-
"English": "eng",
|
25 |
-
"Tagalog": "tgl",
|
26 |
-
"Cebuano": "ceb",
|
27 |
-
"Ilocano": "ilo",
|
28 |
-
"Waray": "war",
|
29 |
-
"Pangasinan": "pag"
|
30 |
-
}
|
31 |
-
|
32 |
-
NLLB_LANGUAGE_CODES = {
|
33 |
-
"eng": "eng_Latn",
|
34 |
-
"tgl": "tgl_Latn",
|
35 |
-
"ceb": "ceb_Latn",
|
36 |
-
"ilo": "ilo_Latn",
|
37 |
-
"war": "war_Latn",
|
38 |
-
"pag": "pag_Latn"
|
39 |
-
}
|
40 |
-
|
41 |
-
def __init__(
|
42 |
-
self,
|
43 |
-
source_lang: str = "eng",
|
44 |
-
target_lang: str = "tgl",
|
45 |
-
device: Optional[str] = None
|
46 |
-
):
|
47 |
-
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
48 |
-
self.source_lang = source_lang
|
49 |
-
self.target_lang = target_lang
|
50 |
-
self.sample_rate = 16000
|
51 |
-
|
52 |
-
print(f"Initializing Talklas Translator on {self.device}")
|
53 |
-
|
54 |
-
# Initialize models
|
55 |
-
self._initialize_stt_model()
|
56 |
-
self._initialize_mt_model()
|
57 |
-
self._initialize_tts_model()
|
58 |
-
|
59 |
-
def _initialize_stt_model(self):
|
60 |
-
"""Initialize speech-to-text model with fallback to Whisper"""
|
61 |
-
try:
|
62 |
-
print("Loading STT model...")
|
63 |
-
try:
|
64 |
-
# Try loading MMS model first
|
65 |
-
self.stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
|
66 |
-
self.stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
|
67 |
-
|
68 |
-
# Set language if available
|
69 |
-
if self.source_lang in self.stt_processor.tokenizer.vocab.keys():
|
70 |
-
self.stt_processor.tokenizer.set_target_lang(self.source_lang)
|
71 |
-
self.stt_model.load_adapter(self.source_lang)
|
72 |
-
print(f"Loaded MMS STT model for {self.source_lang}")
|
73 |
-
else:
|
74 |
-
print(f"Language {self.source_lang} not in MMS, using default")
|
75 |
-
|
76 |
-
except Exception as mms_error:
|
77 |
-
print(f"MMS loading failed: {mms_error}")
|
78 |
-
# Fallback to Whisper
|
79 |
-
print("Loading Whisper as fallback...")
|
80 |
-
self.stt_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
81 |
-
self.stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
82 |
-
print("Loaded Whisper STT model")
|
83 |
-
|
84 |
-
self.stt_model.to(self.device)
|
85 |
-
|
86 |
-
except Exception as e:
|
87 |
-
print(f"STT model initialization failed: {e}")
|
88 |
-
raise RuntimeError("Could not initialize STT model")
|
89 |
-
|
90 |
-
def _initialize_mt_model(self):
|
91 |
-
"""Initialize machine translation model"""
|
92 |
-
try:
|
93 |
-
print("Loading NLLB Translation model...")
|
94 |
-
self.mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
95 |
-
self.mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
96 |
-
self.mt_model.to(self.device)
|
97 |
-
print("NLLB Translation model loaded")
|
98 |
-
except Exception as e:
|
99 |
-
print(f"MT model initialization failed: {e}")
|
100 |
-
raise
|
101 |
-
|
102 |
-
def _initialize_tts_model(self):
|
103 |
-
"""Initialize text-to-speech model"""
|
104 |
-
try:
|
105 |
-
print("Loading TTS model...")
|
106 |
-
try:
|
107 |
-
self.tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
|
108 |
-
self.tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
|
109 |
-
print(f"Loaded TTS model for {self.target_lang}")
|
110 |
-
except Exception as tts_error:
|
111 |
-
print(f"Target language TTS failed: {tts_error}")
|
112 |
-
print("Falling back to English TTS")
|
113 |
-
self.tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
114 |
-
self.tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
115 |
-
|
116 |
-
self.tts_model.to(self.device)
|
117 |
-
except Exception as e:
|
118 |
-
print(f"TTS model initialization failed: {e}")
|
119 |
-
raise
|
120 |
-
|
121 |
-
def update_languages(self, source_lang: str, target_lang: str) -> str:
|
122 |
-
"""Update languages and reinitialize models if needed"""
|
123 |
-
if source_lang == self.source_lang and target_lang == self.target_lang:
|
124 |
-
return "Languages already set"
|
125 |
-
|
126 |
-
self.source_lang = source_lang
|
127 |
-
self.target_lang = target_lang
|
128 |
-
|
129 |
-
# Only reinitialize models that depend on language
|
130 |
-
self._initialize_stt_model()
|
131 |
-
self._initialize_tts_model()
|
132 |
-
|
133 |
-
return f"Languages updated to {source_lang} → {target_lang}"
|
134 |
-
|
135 |
-
def speech_to_text(self, audio_path: str) -> str:
|
136 |
-
"""Convert speech to text using loaded STT model"""
|
137 |
-
try:
|
138 |
-
waveform, sample_rate = sf.read(audio_path)
|
139 |
-
|
140 |
-
if sample_rate != 16000:
|
141 |
-
import librosa
|
142 |
-
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
143 |
-
|
144 |
-
inputs = self.stt_processor(
|
145 |
-
waveform,
|
146 |
-
sampling_rate=16000,
|
147 |
-
return_tensors="pt"
|
148 |
-
).to(self.device)
|
149 |
-
|
150 |
-
with torch.no_grad():
|
151 |
-
if isinstance(self.stt_model, WhisperForConditionalGeneration): # Whisper model
|
152 |
-
generated_ids = self.stt_model.generate(**inputs)
|
153 |
-
transcription = self.stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
154 |
-
else: # MMS model (Wav2Vec2ForCTC)
|
155 |
-
logits = self.stt_model(**inputs).logits
|
156 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
157 |
-
transcription = self.stt_processor.batch_decode(predicted_ids)[0]
|
158 |
-
|
159 |
-
return transcription
|
160 |
-
|
161 |
-
except Exception as e:
|
162 |
-
print(f"Speech recognition failed: {e}")
|
163 |
-
raise RuntimeError("Speech recognition failed")
|
164 |
-
|
165 |
-
def translate_text(self, text: str) -> str:
|
166 |
-
"""Translate text using NLLB model"""
|
167 |
-
try:
|
168 |
-
source_code = self.NLLB_LANGUAGE_CODES[self.source_lang]
|
169 |
-
target_code = self.NLLB_LANGUAGE_CODES[self.target_lang]
|
170 |
-
|
171 |
-
self.mt_tokenizer.src_lang = source_code
|
172 |
-
inputs = self.mt_tokenizer(text, return_tensors="pt").to(self.device)
|
173 |
-
|
174 |
-
with torch.no_grad():
|
175 |
-
generated_tokens = self.mt_model.generate(
|
176 |
-
**inputs,
|
177 |
-
forced_bos_token_id=self.mt_tokenizer.convert_tokens_to_ids(target_code),
|
178 |
-
max_length=448
|
179 |
-
)
|
180 |
-
|
181 |
-
return self.mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
182 |
-
|
183 |
-
except Exception as e:
|
184 |
-
print(f"Translation failed: {e}")
|
185 |
-
raise RuntimeError("Text translation failed")
|
186 |
-
|
187 |
-
def text_to_speech(self, text: str) -> Tuple[int, np.ndarray]:
|
188 |
-
"""Convert text to speech"""
|
189 |
-
try:
|
190 |
-
inputs = self.tts_tokenizer(text, return_tensors="pt").to(self.device)
|
191 |
-
|
192 |
-
with torch.no_grad():
|
193 |
-
output = self.tts_model(**inputs)
|
194 |
-
|
195 |
-
speech = output.waveform.cpu().numpy().squeeze()
|
196 |
-
speech = (speech * 32767).astype(np.int16)
|
197 |
-
|
198 |
-
return self.tts_model.config.sampling_rate, speech
|
199 |
-
|
200 |
-
except Exception as e:
|
201 |
-
print(f"Speech synthesis failed: {e}")
|
202 |
-
raise RuntimeError("Speech synthesis failed")
|
203 |
-
|
204 |
-
def translate_speech(self, audio_path: str) -> Dict:
|
205 |
-
"""Full speech-to-speech translation"""
|
206 |
-
try:
|
207 |
-
source_text = self.speech_to_text(audio_path)
|
208 |
-
translated_text = self.translate_text(source_text)
|
209 |
-
sample_rate, audio = self.text_to_speech(translated_text)
|
210 |
-
|
211 |
-
return {
|
212 |
-
"source_text": source_text,
|
213 |
-
"translated_text": translated_text,
|
214 |
-
"output_audio": (sample_rate, audio),
|
215 |
-
"performance": "Translation successful"
|
216 |
-
}
|
217 |
-
except Exception as e:
|
218 |
-
return {
|
219 |
-
"source_text": "Error",
|
220 |
-
"translated_text": "Error",
|
221 |
-
"output_audio": (16000, np.zeros(1000, dtype=np.int16)),
|
222 |
-
"performance": f"Error: {str(e)}"
|
223 |
-
}
|
224 |
-
|
225 |
-
def translate_text_only(self, text: str) -> Dict:
|
226 |
-
"""Text-to-speech translation"""
|
227 |
-
try:
|
228 |
-
translated_text = self.translate_text(text)
|
229 |
-
sample_rate, audio = self.text_to_speech(translated_text)
|
230 |
-
|
231 |
-
return {
|
232 |
-
"source_text": text,
|
233 |
-
"translated_text": translated_text,
|
234 |
-
"output_audio": (sample_rate, audio),
|
235 |
-
"performance": "Translation successful"
|
236 |
-
}
|
237 |
-
except Exception as e:
|
238 |
-
return {
|
239 |
-
"source_text": text,
|
240 |
-
"translated_text": "Error",
|
241 |
-
"output_audio": (16000, np.zeros(1000, dtype=np.int16)),
|
242 |
-
"performance": f"Error: {str(e)}"
|
243 |
-
}
|
244 |
-
|
245 |
-
class TranslatorSingleton:
|
246 |
-
_instance = None
|
247 |
-
|
248 |
-
@classmethod
|
249 |
-
def get_instance(cls):
|
250 |
-
if cls._instance is None:
|
251 |
-
cls._instance = TalklasTranslator()
|
252 |
-
return cls._instance
|
253 |
-
|
254 |
-
def process_audio(audio_path, source_lang, target_lang):
|
255 |
-
"""Process audio through the full translation pipeline"""
|
256 |
-
# Validate input
|
257 |
-
if not audio_path:
|
258 |
-
return None, "No audio provided", "No translation available", "Please provide audio input"
|
259 |
-
|
260 |
-
# Update languages
|
261 |
-
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
|
262 |
-
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
|
263 |
-
|
264 |
-
translator = TranslatorSingleton.get_instance()
|
265 |
-
status = translator.update_languages(source_code, target_code)
|
266 |
-
|
267 |
-
# Process the audio
|
268 |
-
results = translator.translate_speech(audio_path)
|
269 |
-
|
270 |
-
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
|
271 |
-
|
272 |
-
def process_text(text, source_lang, target_lang):
|
273 |
-
"""Process text through the translation pipeline"""
|
274 |
-
# Validate input
|
275 |
-
if not text:
|
276 |
-
return None, "No text provided", "No translation available", "Please provide text input"
|
277 |
-
|
278 |
-
# Update languages
|
279 |
-
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
|
280 |
-
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
|
281 |
-
|
282 |
-
translator = TranslatorSingleton.get_instance()
|
283 |
-
status = translator.update_languages(source_code, target_code)
|
284 |
-
|
285 |
-
# Process the text
|
286 |
-
results = translator.translate_text_only(text)
|
287 |
-
|
288 |
-
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
|
289 |
-
|
290 |
-
def create_gradio_interface():
|
291 |
-
"""Create and launch Gradio interface"""
|
292 |
-
# Define language options
|
293 |
-
languages = list(TalklasTranslator.LANGUAGE_MAPPING.keys())
|
294 |
-
|
295 |
-
# Define the interface
|
296 |
-
demo = gr.Blocks(title="Talklas - Speech & Text Translation")
|
297 |
-
|
298 |
-
with demo:
|
299 |
-
gr.Markdown("# Talklas: Speech-to-Speech Translation System")
|
300 |
-
gr.Markdown("### Translate between Philippine Languages and English")
|
301 |
-
|
302 |
-
with gr.Row():
|
303 |
-
with gr.Column():
|
304 |
-
source_lang = gr.Dropdown(
|
305 |
-
choices=languages,
|
306 |
-
value="English",
|
307 |
-
label="Source Language"
|
308 |
-
)
|
309 |
-
|
310 |
-
target_lang = gr.Dropdown(
|
311 |
-
choices=languages,
|
312 |
-
value="Tagalog",
|
313 |
-
label="Target Language"
|
314 |
-
)
|
315 |
-
|
316 |
-
language_status = gr.Textbox(label="Language Status")
|
317 |
-
update_btn = gr.Button("Update Languages")
|
318 |
-
|
319 |
-
with gr.Tabs():
|
320 |
-
with gr.TabItem("Audio Input"):
|
321 |
-
with gr.Row():
|
322 |
-
with gr.Column():
|
323 |
-
gr.Markdown("### Audio Input")
|
324 |
-
audio_input = gr.Audio(
|
325 |
-
type="filepath",
|
326 |
-
label="Upload Audio File"
|
327 |
-
)
|
328 |
-
audio_translate_btn = gr.Button("Translate Audio", variant="primary")
|
329 |
-
|
330 |
-
with gr.Column():
|
331 |
-
gr.Markdown("### Output")
|
332 |
-
audio_output = gr.Audio(
|
333 |
-
label="Translated Speech",
|
334 |
-
type="numpy",
|
335 |
-
autoplay=True
|
336 |
-
)
|
337 |
-
|
338 |
-
with gr.TabItem("Text Input"):
|
339 |
-
with gr.Row():
|
340 |
-
with gr.Column():
|
341 |
-
gr.Markdown("### Text Input")
|
342 |
-
text_input = gr.Textbox(
|
343 |
-
label="Enter text to translate",
|
344 |
-
lines=3
|
345 |
-
)
|
346 |
-
text_translate_btn = gr.Button("Translate Text", variant="primary")
|
347 |
-
|
348 |
-
with gr.Column():
|
349 |
-
gr.Markdown("### Output")
|
350 |
-
text_output = gr.Audio(
|
351 |
-
label="Translated Speech",
|
352 |
-
type="numpy",
|
353 |
-
autoplay=True
|
354 |
-
)
|
355 |
-
|
356 |
-
with gr.Row():
|
357 |
-
with gr.Column():
|
358 |
-
source_text = gr.Textbox(label="Source Text")
|
359 |
-
translated_text = gr.Textbox(label="Translated Text")
|
360 |
-
performance_info = gr.Textbox(label="Performance Metrics")
|
361 |
-
|
362 |
-
# Set up events
|
363 |
-
update_btn.click(
|
364 |
-
lambda source_lang, target_lang: TranslatorSingleton.get_instance().update_languages(
|
365 |
-
TalklasTranslator.LANGUAGE_MAPPING[source_lang],
|
366 |
-
TalklasTranslator.LANGUAGE_MAPPING[target_lang]
|
367 |
-
),
|
368 |
-
inputs=[source_lang, target_lang],
|
369 |
-
outputs=[language_status]
|
370 |
-
)
|
371 |
-
|
372 |
-
# Audio translate button click
|
373 |
-
audio_translate_btn.click(
|
374 |
-
process_audio,
|
375 |
-
inputs=[audio_input, source_lang, target_lang],
|
376 |
-
outputs=[audio_output, source_text, translated_text, performance_info]
|
377 |
-
).then(
|
378 |
-
None,
|
379 |
-
None,
|
380 |
-
None,
|
381 |
-
js="""() => {
|
382 |
-
const audioElements = document.querySelectorAll('audio');
|
383 |
-
if (audioElements.length > 0) {
|
384 |
-
const lastAudio = audioElements[audioElements.length - 1];
|
385 |
-
lastAudio.play().catch(error => {
|
386 |
-
console.warn('Autoplay failed:', error);
|
387 |
-
alert('Audio may require user interaction to play');
|
388 |
-
});
|
389 |
-
}
|
390 |
-
}"""
|
391 |
-
)
|
392 |
-
|
393 |
-
# Text translate button click
|
394 |
-
text_translate_btn.click(
|
395 |
-
process_text,
|
396 |
-
inputs=[text_input, source_lang, target_lang],
|
397 |
-
outputs=[text_output, source_text, translated_text, performance_info]
|
398 |
-
).then(
|
399 |
-
None,
|
400 |
-
None,
|
401 |
-
None,
|
402 |
-
js="""() => {
|
403 |
-
const audioElements = document.querySelectorAll('audio');
|
404 |
-
if (audioElements.length > 0) {
|
405 |
-
const lastAudio = audioElements[audioElements.length - 1];
|
406 |
-
lastAudio.play().catch(error => {
|
407 |
-
console.warn('Autoplay failed:', error);
|
408 |
-
alert('Audio may require user interaction to play');
|
409 |
-
});
|
410 |
-
}
|
411 |
-
}"""
|
412 |
-
)
|
413 |
-
|
414 |
-
return demo
|
415 |
-
|
416 |
-
if __name__ == "__main__":
|
417 |
-
demo = create_gradio_interface()
|
418 |
-
demo.launch(share=
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import soundfile as sf
|
6 |
+
from transformers import (
|
7 |
+
AutoModelForSeq2SeqLM,
|
8 |
+
AutoTokenizer,
|
9 |
+
VitsModel,
|
10 |
+
AutoProcessor,
|
11 |
+
AutoModelForCTC,
|
12 |
+
WhisperProcessor,
|
13 |
+
WhisperForConditionalGeneration
|
14 |
+
)
|
15 |
+
from typing import Optional, Tuple, Dict, List
|
16 |
+
|
17 |
+
class TalklasTranslator:
|
18 |
+
"""
|
19 |
+
Speech-to-Speech translation pipeline for Philippine languages.
|
20 |
+
Uses MMS/Whisper for STT, NLLB for MT, and MMS for TTS.
|
21 |
+
"""
|
22 |
+
|
23 |
+
LANGUAGE_MAPPING = {
|
24 |
+
"English": "eng",
|
25 |
+
"Tagalog": "tgl",
|
26 |
+
"Cebuano": "ceb",
|
27 |
+
"Ilocano": "ilo",
|
28 |
+
"Waray": "war",
|
29 |
+
"Pangasinan": "pag"
|
30 |
+
}
|
31 |
+
|
32 |
+
NLLB_LANGUAGE_CODES = {
|
33 |
+
"eng": "eng_Latn",
|
34 |
+
"tgl": "tgl_Latn",
|
35 |
+
"ceb": "ceb_Latn",
|
36 |
+
"ilo": "ilo_Latn",
|
37 |
+
"war": "war_Latn",
|
38 |
+
"pag": "pag_Latn"
|
39 |
+
}
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
source_lang: str = "eng",
|
44 |
+
target_lang: str = "tgl",
|
45 |
+
device: Optional[str] = None
|
46 |
+
):
|
47 |
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
48 |
+
self.source_lang = source_lang
|
49 |
+
self.target_lang = target_lang
|
50 |
+
self.sample_rate = 16000
|
51 |
+
|
52 |
+
print(f"Initializing Talklas Translator on {self.device}")
|
53 |
+
|
54 |
+
# Initialize models
|
55 |
+
self._initialize_stt_model()
|
56 |
+
self._initialize_mt_model()
|
57 |
+
self._initialize_tts_model()
|
58 |
+
|
59 |
+
def _initialize_stt_model(self):
|
60 |
+
"""Initialize speech-to-text model with fallback to Whisper"""
|
61 |
+
try:
|
62 |
+
print("Loading STT model...")
|
63 |
+
try:
|
64 |
+
# Try loading MMS model first
|
65 |
+
self.stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
|
66 |
+
self.stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
|
67 |
+
|
68 |
+
# Set language if available
|
69 |
+
if self.source_lang in self.stt_processor.tokenizer.vocab.keys():
|
70 |
+
self.stt_processor.tokenizer.set_target_lang(self.source_lang)
|
71 |
+
self.stt_model.load_adapter(self.source_lang)
|
72 |
+
print(f"Loaded MMS STT model for {self.source_lang}")
|
73 |
+
else:
|
74 |
+
print(f"Language {self.source_lang} not in MMS, using default")
|
75 |
+
|
76 |
+
except Exception as mms_error:
|
77 |
+
print(f"MMS loading failed: {mms_error}")
|
78 |
+
# Fallback to Whisper
|
79 |
+
print("Loading Whisper as fallback...")
|
80 |
+
self.stt_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
81 |
+
self.stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
82 |
+
print("Loaded Whisper STT model")
|
83 |
+
|
84 |
+
self.stt_model.to(self.device)
|
85 |
+
|
86 |
+
except Exception as e:
|
87 |
+
print(f"STT model initialization failed: {e}")
|
88 |
+
raise RuntimeError("Could not initialize STT model")
|
89 |
+
|
90 |
+
def _initialize_mt_model(self):
|
91 |
+
"""Initialize machine translation model"""
|
92 |
+
try:
|
93 |
+
print("Loading NLLB Translation model...")
|
94 |
+
self.mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
95 |
+
self.mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
96 |
+
self.mt_model.to(self.device)
|
97 |
+
print("NLLB Translation model loaded")
|
98 |
+
except Exception as e:
|
99 |
+
print(f"MT model initialization failed: {e}")
|
100 |
+
raise
|
101 |
+
|
102 |
+
def _initialize_tts_model(self):
|
103 |
+
"""Initialize text-to-speech model"""
|
104 |
+
try:
|
105 |
+
print("Loading TTS model...")
|
106 |
+
try:
|
107 |
+
self.tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
|
108 |
+
self.tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
|
109 |
+
print(f"Loaded TTS model for {self.target_lang}")
|
110 |
+
except Exception as tts_error:
|
111 |
+
print(f"Target language TTS failed: {tts_error}")
|
112 |
+
print("Falling back to English TTS")
|
113 |
+
self.tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
114 |
+
self.tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
115 |
+
|
116 |
+
self.tts_model.to(self.device)
|
117 |
+
except Exception as e:
|
118 |
+
print(f"TTS model initialization failed: {e}")
|
119 |
+
raise
|
120 |
+
|
121 |
+
def update_languages(self, source_lang: str, target_lang: str) -> str:
|
122 |
+
"""Update languages and reinitialize models if needed"""
|
123 |
+
if source_lang == self.source_lang and target_lang == self.target_lang:
|
124 |
+
return "Languages already set"
|
125 |
+
|
126 |
+
self.source_lang = source_lang
|
127 |
+
self.target_lang = target_lang
|
128 |
+
|
129 |
+
# Only reinitialize models that depend on language
|
130 |
+
self._initialize_stt_model()
|
131 |
+
self._initialize_tts_model()
|
132 |
+
|
133 |
+
return f"Languages updated to {source_lang} → {target_lang}"
|
134 |
+
|
135 |
+
def speech_to_text(self, audio_path: str) -> str:
|
136 |
+
"""Convert speech to text using loaded STT model"""
|
137 |
+
try:
|
138 |
+
waveform, sample_rate = sf.read(audio_path)
|
139 |
+
|
140 |
+
if sample_rate != 16000:
|
141 |
+
import librosa
|
142 |
+
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
143 |
+
|
144 |
+
inputs = self.stt_processor(
|
145 |
+
waveform,
|
146 |
+
sampling_rate=16000,
|
147 |
+
return_tensors="pt"
|
148 |
+
).to(self.device)
|
149 |
+
|
150 |
+
with torch.no_grad():
|
151 |
+
if isinstance(self.stt_model, WhisperForConditionalGeneration): # Whisper model
|
152 |
+
generated_ids = self.stt_model.generate(**inputs)
|
153 |
+
transcription = self.stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
154 |
+
else: # MMS model (Wav2Vec2ForCTC)
|
155 |
+
logits = self.stt_model(**inputs).logits
|
156 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
157 |
+
transcription = self.stt_processor.batch_decode(predicted_ids)[0]
|
158 |
+
|
159 |
+
return transcription
|
160 |
+
|
161 |
+
except Exception as e:
|
162 |
+
print(f"Speech recognition failed: {e}")
|
163 |
+
raise RuntimeError("Speech recognition failed")
|
164 |
+
|
165 |
+
def translate_text(self, text: str) -> str:
|
166 |
+
"""Translate text using NLLB model"""
|
167 |
+
try:
|
168 |
+
source_code = self.NLLB_LANGUAGE_CODES[self.source_lang]
|
169 |
+
target_code = self.NLLB_LANGUAGE_CODES[self.target_lang]
|
170 |
+
|
171 |
+
self.mt_tokenizer.src_lang = source_code
|
172 |
+
inputs = self.mt_tokenizer(text, return_tensors="pt").to(self.device)
|
173 |
+
|
174 |
+
with torch.no_grad():
|
175 |
+
generated_tokens = self.mt_model.generate(
|
176 |
+
**inputs,
|
177 |
+
forced_bos_token_id=self.mt_tokenizer.convert_tokens_to_ids(target_code),
|
178 |
+
max_length=448
|
179 |
+
)
|
180 |
+
|
181 |
+
return self.mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
182 |
+
|
183 |
+
except Exception as e:
|
184 |
+
print(f"Translation failed: {e}")
|
185 |
+
raise RuntimeError("Text translation failed")
|
186 |
+
|
187 |
+
def text_to_speech(self, text: str) -> Tuple[int, np.ndarray]:
|
188 |
+
"""Convert text to speech"""
|
189 |
+
try:
|
190 |
+
inputs = self.tts_tokenizer(text, return_tensors="pt").to(self.device)
|
191 |
+
|
192 |
+
with torch.no_grad():
|
193 |
+
output = self.tts_model(**inputs)
|
194 |
+
|
195 |
+
speech = output.waveform.cpu().numpy().squeeze()
|
196 |
+
speech = (speech * 32767).astype(np.int16)
|
197 |
+
|
198 |
+
return self.tts_model.config.sampling_rate, speech
|
199 |
+
|
200 |
+
except Exception as e:
|
201 |
+
print(f"Speech synthesis failed: {e}")
|
202 |
+
raise RuntimeError("Speech synthesis failed")
|
203 |
+
|
204 |
+
def translate_speech(self, audio_path: str) -> Dict:
|
205 |
+
"""Full speech-to-speech translation"""
|
206 |
+
try:
|
207 |
+
source_text = self.speech_to_text(audio_path)
|
208 |
+
translated_text = self.translate_text(source_text)
|
209 |
+
sample_rate, audio = self.text_to_speech(translated_text)
|
210 |
+
|
211 |
+
return {
|
212 |
+
"source_text": source_text,
|
213 |
+
"translated_text": translated_text,
|
214 |
+
"output_audio": (sample_rate, audio),
|
215 |
+
"performance": "Translation successful"
|
216 |
+
}
|
217 |
+
except Exception as e:
|
218 |
+
return {
|
219 |
+
"source_text": "Error",
|
220 |
+
"translated_text": "Error",
|
221 |
+
"output_audio": (16000, np.zeros(1000, dtype=np.int16)),
|
222 |
+
"performance": f"Error: {str(e)}"
|
223 |
+
}
|
224 |
+
|
225 |
+
def translate_text_only(self, text: str) -> Dict:
|
226 |
+
"""Text-to-speech translation"""
|
227 |
+
try:
|
228 |
+
translated_text = self.translate_text(text)
|
229 |
+
sample_rate, audio = self.text_to_speech(translated_text)
|
230 |
+
|
231 |
+
return {
|
232 |
+
"source_text": text,
|
233 |
+
"translated_text": translated_text,
|
234 |
+
"output_audio": (sample_rate, audio),
|
235 |
+
"performance": "Translation successful"
|
236 |
+
}
|
237 |
+
except Exception as e:
|
238 |
+
return {
|
239 |
+
"source_text": text,
|
240 |
+
"translated_text": "Error",
|
241 |
+
"output_audio": (16000, np.zeros(1000, dtype=np.int16)),
|
242 |
+
"performance": f"Error: {str(e)}"
|
243 |
+
}
|
244 |
+
|
245 |
+
class TranslatorSingleton:
|
246 |
+
_instance = None
|
247 |
+
|
248 |
+
@classmethod
|
249 |
+
def get_instance(cls):
|
250 |
+
if cls._instance is None:
|
251 |
+
cls._instance = TalklasTranslator()
|
252 |
+
return cls._instance
|
253 |
+
|
254 |
+
def process_audio(audio_path, source_lang, target_lang):
|
255 |
+
"""Process audio through the full translation pipeline"""
|
256 |
+
# Validate input
|
257 |
+
if not audio_path:
|
258 |
+
return None, "No audio provided", "No translation available", "Please provide audio input"
|
259 |
+
|
260 |
+
# Update languages
|
261 |
+
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
|
262 |
+
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
|
263 |
+
|
264 |
+
translator = TranslatorSingleton.get_instance()
|
265 |
+
status = translator.update_languages(source_code, target_code)
|
266 |
+
|
267 |
+
# Process the audio
|
268 |
+
results = translator.translate_speech(audio_path)
|
269 |
+
|
270 |
+
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
|
271 |
+
|
272 |
+
def process_text(text, source_lang, target_lang):
|
273 |
+
"""Process text through the translation pipeline"""
|
274 |
+
# Validate input
|
275 |
+
if not text:
|
276 |
+
return None, "No text provided", "No translation available", "Please provide text input"
|
277 |
+
|
278 |
+
# Update languages
|
279 |
+
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
|
280 |
+
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
|
281 |
+
|
282 |
+
translator = TranslatorSingleton.get_instance()
|
283 |
+
status = translator.update_languages(source_code, target_code)
|
284 |
+
|
285 |
+
# Process the text
|
286 |
+
results = translator.translate_text_only(text)
|
287 |
+
|
288 |
+
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
|
289 |
+
|
290 |
+
def create_gradio_interface():
|
291 |
+
"""Create and launch Gradio interface"""
|
292 |
+
# Define language options
|
293 |
+
languages = list(TalklasTranslator.LANGUAGE_MAPPING.keys())
|
294 |
+
|
295 |
+
# Define the interface
|
296 |
+
demo = gr.Blocks(title="Talklas - Speech & Text Translation")
|
297 |
+
|
298 |
+
with demo:
|
299 |
+
gr.Markdown("# Talklas: Speech-to-Speech Translation System")
|
300 |
+
gr.Markdown("### Translate between Philippine Languages and English")
|
301 |
+
|
302 |
+
with gr.Row():
|
303 |
+
with gr.Column():
|
304 |
+
source_lang = gr.Dropdown(
|
305 |
+
choices=languages,
|
306 |
+
value="English",
|
307 |
+
label="Source Language"
|
308 |
+
)
|
309 |
+
|
310 |
+
target_lang = gr.Dropdown(
|
311 |
+
choices=languages,
|
312 |
+
value="Tagalog",
|
313 |
+
label="Target Language"
|
314 |
+
)
|
315 |
+
|
316 |
+
language_status = gr.Textbox(label="Language Status")
|
317 |
+
update_btn = gr.Button("Update Languages")
|
318 |
+
|
319 |
+
with gr.Tabs():
|
320 |
+
with gr.TabItem("Audio Input"):
|
321 |
+
with gr.Row():
|
322 |
+
with gr.Column():
|
323 |
+
gr.Markdown("### Audio Input")
|
324 |
+
audio_input = gr.Audio(
|
325 |
+
type="filepath",
|
326 |
+
label="Upload Audio File"
|
327 |
+
)
|
328 |
+
audio_translate_btn = gr.Button("Translate Audio", variant="primary")
|
329 |
+
|
330 |
+
with gr.Column():
|
331 |
+
gr.Markdown("### Output")
|
332 |
+
audio_output = gr.Audio(
|
333 |
+
label="Translated Speech",
|
334 |
+
type="numpy",
|
335 |
+
autoplay=True
|
336 |
+
)
|
337 |
+
|
338 |
+
with gr.TabItem("Text Input"):
|
339 |
+
with gr.Row():
|
340 |
+
with gr.Column():
|
341 |
+
gr.Markdown("### Text Input")
|
342 |
+
text_input = gr.Textbox(
|
343 |
+
label="Enter text to translate",
|
344 |
+
lines=3
|
345 |
+
)
|
346 |
+
text_translate_btn = gr.Button("Translate Text", variant="primary")
|
347 |
+
|
348 |
+
with gr.Column():
|
349 |
+
gr.Markdown("### Output")
|
350 |
+
text_output = gr.Audio(
|
351 |
+
label="Translated Speech",
|
352 |
+
type="numpy",
|
353 |
+
autoplay=True
|
354 |
+
)
|
355 |
+
|
356 |
+
with gr.Row():
|
357 |
+
with gr.Column():
|
358 |
+
source_text = gr.Textbox(label="Source Text")
|
359 |
+
translated_text = gr.Textbox(label="Translated Text")
|
360 |
+
performance_info = gr.Textbox(label="Performance Metrics")
|
361 |
+
|
362 |
+
# Set up events
|
363 |
+
update_btn.click(
|
364 |
+
lambda source_lang, target_lang: TranslatorSingleton.get_instance().update_languages(
|
365 |
+
TalklasTranslator.LANGUAGE_MAPPING[source_lang],
|
366 |
+
TalklasTranslator.LANGUAGE_MAPPING[target_lang]
|
367 |
+
),
|
368 |
+
inputs=[source_lang, target_lang],
|
369 |
+
outputs=[language_status]
|
370 |
+
)
|
371 |
+
|
372 |
+
# Audio translate button click
|
373 |
+
audio_translate_btn.click(
|
374 |
+
process_audio,
|
375 |
+
inputs=[audio_input, source_lang, target_lang],
|
376 |
+
outputs=[audio_output, source_text, translated_text, performance_info]
|
377 |
+
).then(
|
378 |
+
None,
|
379 |
+
None,
|
380 |
+
None,
|
381 |
+
js="""() => {
|
382 |
+
const audioElements = document.querySelectorAll('audio');
|
383 |
+
if (audioElements.length > 0) {
|
384 |
+
const lastAudio = audioElements[audioElements.length - 1];
|
385 |
+
lastAudio.play().catch(error => {
|
386 |
+
console.warn('Autoplay failed:', error);
|
387 |
+
alert('Audio may require user interaction to play');
|
388 |
+
});
|
389 |
+
}
|
390 |
+
}"""
|
391 |
+
)
|
392 |
+
|
393 |
+
# Text translate button click
|
394 |
+
text_translate_btn.click(
|
395 |
+
process_text,
|
396 |
+
inputs=[text_input, source_lang, target_lang],
|
397 |
+
outputs=[text_output, source_text, translated_text, performance_info]
|
398 |
+
).then(
|
399 |
+
None,
|
400 |
+
None,
|
401 |
+
None,
|
402 |
+
js="""() => {
|
403 |
+
const audioElements = document.querySelectorAll('audio');
|
404 |
+
if (audioElements.length > 0) {
|
405 |
+
const lastAudio = audioElements[audioElements.length - 1];
|
406 |
+
lastAudio.play().catch(error => {
|
407 |
+
console.warn('Autoplay failed:', error);
|
408 |
+
alert('Audio may require user interaction to play');
|
409 |
+
});
|
410 |
+
}
|
411 |
+
}"""
|
412 |
+
)
|
413 |
+
|
414 |
+
return demo
|
415 |
+
|
416 |
+
if __name__ == "__main__":
|
417 |
+
demo = create_gradio_interface()
|
418 |
+
demo.launch(share=True)
|