TalklasApp / app.py
Jerich's picture
API integration for the Talklas pipeline
de2c35e verified
raw
history blame
20.3 kB
import os
import torch
import gradio as gr
import numpy as np
import soundfile as sf
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
VitsModel,
AutoProcessor,
AutoModelForCTC,
WhisperProcessor,
WhisperForConditionalGeneration
)
from typing import Optional, Tuple, Dict, List
from flask import Flask, request, jsonify
from flask_cors import CORS
import base64
import io
import tempfile
class TalklasTranslator:
"""
Speech-to-Speech translation pipeline for Philippine languages.
Uses MMS/Whisper for STT, NLLB for MT, and MMS for TTS.
"""
LANGUAGE_MAPPING = {
"English": "eng",
"Tagalog": "tgl",
"Cebuano": "ceb",
"Ilocano": "ilo",
"Waray": "war",
"Pangasinan": "pag"
}
NLLB_LANGUAGE_CODES = {
"eng": "eng_Latn",
"tgl": "tgl_Latn",
"ceb": "ceb_Latn",
"ilo": "ilo_Latn",
"war": "war_Latn",
"pag": "pag_Latn"
}
def __init__(
self,
source_lang: str = "eng",
target_lang: str = "tgl",
device: Optional[str] = None
):
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self.source_lang = source_lang
self.target_lang = target_lang
self.sample_rate = 16000
print(f"Initializing Talklas Translator on {self.device}")
# Initialize models
self._initialize_stt_model()
self._initialize_mt_model()
self._initialize_tts_model()
def _initialize_stt_model(self):
"""Initialize speech-to-text model with fallback to Whisper"""
try:
print("Loading STT model...")
try:
# Try loading MMS model first
self.stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
self.stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
# Set language if available
if self.source_lang in self.stt_processor.tokenizer.vocab.keys():
self.stt_processor.tokenizer.set_target_lang(self.source_lang)
self.stt_model.load_adapter(self.source_lang)
print(f"Loaded MMS STT model for {self.source_lang}")
else:
print(f"Language {self.source_lang} not in MMS, using default")
except Exception as mms_error:
print(f"MMS loading failed: {mms_error}")
# Fallback to Whisper
print("Loading Whisper as fallback...")
self.stt_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
self.stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
print("Loaded Whisper STT model")
self.stt_model.to(self.device)
except Exception as e:
print(f"STT model initialization failed: {e}")
raise RuntimeError("Could not initialize STT model")
def _initialize_mt_model(self):
"""Initialize machine translation model"""
try:
print("Loading NLLB Translation model...")
self.mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
self.mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
self.mt_model.to(self.device)
print("NLLB Translation model loaded")
except Exception as e:
print(f"MT model initialization failed: {e}")
raise
def _initialize_tts_model(self):
"""Initialize text-to-speech model"""
try:
print("Loading TTS model...")
try:
self.tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
self.tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
print(f"Loaded TTS model for {self.target_lang}")
except Exception as tts_error:
print(f"Target language TTS failed: {tts_error}")
print("Falling back to English TTS")
self.tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
self.tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
self.tts_model.to(self.device)
except Exception as e:
print(f"TTS model initialization failed: {e}")
raise
def update_languages(self, source_lang: str, target_lang: str) -> str:
"""Update languages and reinitialize models if needed"""
if source_lang == self.source_lang and target_lang == self.target_lang:
return "Languages already set"
self.source_lang = source_lang
self.target_lang = target_lang
# Only reinitialize models that depend on language
self._initialize_stt_model()
self._initialize_tts_model()
return f"Languages updated to {source_lang}{target_lang}"
def speech_to_text(self, audio_path: str) -> str:
"""Convert speech to text using loaded STT model"""
try:
waveform, sample_rate = sf.read(audio_path)
if sample_rate != 16000:
import librosa
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
inputs = self.stt_processor(
waveform,
sampling_rate=16000,
return_tensors="pt"
).to(self.device)
with torch.no_grad():
if isinstance(self.stt_model, WhisperForConditionalGeneration): # Whisper model
generated_ids = self.stt_model.generate(**inputs)
transcription = self.stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
else: # MMS model (Wav2Vec2ForCTC)
logits = self.stt_model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = self.stt_processor.batch_decode(predicted_ids)[0]
return transcription
except Exception as e:
print(f"Speech recognition failed: {e}")
raise RuntimeError("Speech recognition failed")
def translate_text(self, text: str) -> str:
"""Translate text using NLLB model"""
try:
source_code = self.NLLB_LANGUAGE_CODES[self.source_lang]
target_code = self.NLLB_LANGUAGE_CODES[self.target_lang]
self.mt_tokenizer.src_lang = source_code
inputs = self.mt_tokenizer(text, return_tensors="pt").to(self.device)
with torch.no_grad():
generated_tokens = self.mt_model.generate(
**inputs,
forced_bos_token_id=self.mt_tokenizer.convert_tokens_to_ids(target_code),
max_length=448
)
return self.mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
except Exception as e:
print(f"Translation failed: {e}")
raise RuntimeError("Text translation failed")
def text_to_speech(self, text: str) -> Tuple[int, np.ndarray]:
"""Convert text to speech"""
try:
inputs = self.tts_tokenizer(text, return_tensors="pt").to(self.device)
with torch.no_grad():
output = self.tts_model(**inputs)
speech = output.waveform.cpu().numpy().squeeze()
speech = (speech * 32767).astype(np.int16)
return self.tts_model.config.sampling_rate, speech
except Exception as e:
print(f"Speech synthesis failed: {e}")
raise RuntimeError("Speech synthesis failed")
def translate_speech(self, audio_path: str) -> Dict:
"""Full speech-to-speech translation"""
try:
source_text = self.speech_to_text(audio_path)
translated_text = self.translate_text(source_text)
sample_rate, audio = self.text_to_speech(translated_text)
return {
"source_text": source_text,
"translated_text": translated_text,
"output_audio": (sample_rate, audio),
"performance": "Translation successful"
}
except Exception as e:
return {
"source_text": "Error",
"translated_text": "Error",
"output_audio": (16000, np.zeros(1000, dtype=np.int16)),
"performance": f"Error: {str(e)}"
}
def translate_text_only(self, text: str) -> Dict:
"""Text-to-speech translation"""
try:
translated_text = self.translate_text(text)
sample_rate, audio = self.text_to_speech(translated_text)
return {
"source_text": text,
"translated_text": translated_text,
"output_audio": (sample_rate, audio),
"performance": "Translation successful"
}
except Exception as e:
return {
"source_text": text,
"translated_text": "Error",
"output_audio": (16000, np.zeros(1000, dtype=np.int16)),
"performance": f"Error: {str(e)}"
}
class TranslatorSingleton:
_instance = None
@classmethod
def get_instance(cls):
if cls._instance is None:
cls._instance = TalklasTranslator()
return cls._instance
def process_audio(audio_path, source_lang, target_lang):
"""Process audio through the full translation pipeline"""
# Validate input
if not audio_path:
return None, "No audio provided", "No translation available", "Please provide audio input"
# Update languages
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
translator = TranslatorSingleton.get_instance()
status = translator.update_languages(source_code, target_code)
# Process the audio
results = translator.translate_speech(audio_path)
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
def process_text(text, source_lang, target_lang):
"""Process text through the translation pipeline"""
# Validate input
if not text:
return None, "No text provided", "No translation available", "Please provide text input"
# Update languages
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
translator = TranslatorSingleton.get_instance()
status = translator.update_languages(source_code, target_code)
# Process the text
results = translator.translate_text_only(text)
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
def create_gradio_interface():
"""Create and launch Gradio interface"""
# Define language options
languages = list(TalklasTranslator.LANGUAGE_MAPPING.keys())
# Define the interface
demo = gr.Blocks(title="Talklas - Speech & Text Translation")
with demo:
gr.Markdown("# Talklas: Speech-to-Speech Translation System")
gr.Markdown("### Translate between Philippine Languages and English")
with gr.Row():
with gr.Column():
source_lang = gr.Dropdown(
choices=languages,
value="English",
label="Source Language"
)
target_lang = gr.Dropdown(
choices=languages,
value="Tagalog",
label="Target Language"
)
language_status = gr.Textbox(label="Language Status")
update_btn = gr.Button("Update Languages")
with gr.Tabs():
with gr.TabItem("Audio Input"):
with gr.Row():
with gr.Column():
gr.Markdown("### Audio Input")
audio_input = gr.Audio(
type="filepath",
label="Upload Audio File"
)
audio_translate_btn = gr.Button("Translate Audio", variant="primary")
with gr.Column():
gr.Markdown("### Output")
audio_output = gr.Audio(
label="Translated Speech",
type="numpy",
autoplay=True
)
with gr.TabItem("Text Input"):
with gr.Row():
with gr.Column():
gr.Markdown("### Text Input")
text_input = gr.Textbox(
label="Enter text to translate",
lines=3
)
text_translate_btn = gr.Button("Translate Text", variant="primary")
with gr.Column():
gr.Markdown("### Output")
text_output = gr.Audio(
label="Translated Speech",
type="numpy",
autoplay=True
)
with gr.Row():
with gr.Column():
source_text = gr.Textbox(label="Source Text")
translated_text = gr.Textbox(label="Translated Text")
performance_info = gr.Textbox(label="Performance Metrics")
# Set up events
update_btn.click(
lambda source_lang, target_lang: TranslatorSingleton.get_instance().update_languages(
TalklasTranslator.LANGUAGE_MAPPING[source_lang],
TalklasTranslator.LANGUAGE_MAPPING[target_lang]
),
inputs=[source_lang, target_lang],
outputs=[language_status]
)
# Audio translate button click
audio_translate_btn.click(
process_audio,
inputs=[audio_input, source_lang, target_lang],
outputs=[audio_output, source_text, translated_text, performance_info]
).then(
None,
None,
None,
js="""() => {
const audioElements = document.querySelectorAll('audio');
if (audioElements.length > 0) {
const lastAudio = audioElements[audioElements.length - 1];
lastAudio.play().catch(error => {
console.warn('Autoplay failed:', error);
alert('Audio may require user interaction to play');
});
}
}"""
)
# Text translate button click
text_translate_btn.click(
process_text,
inputs=[text_input, source_lang, target_lang],
outputs=[text_output, source_text, translated_text, performance_info]
).then(
None,
None,
None,
js="""() => {
const audioElements = document.querySelectorAll('audio');
if (audioElements.length > 0) {
const lastAudio = audioElements[audioElements.length - 1];
lastAudio.play().catch(error => {
console.warn('Autoplay failed:', error);
alert('Audio may require user interaction to play');
});
}
}"""
)
return demo
# Create Flask app
app = Flask(__name__)
CORS(app) # This allows cross-origin requests
# Initialize the translator singleton
translator_instance = None
def get_translator():
global translator_instance
if translator_instance is None:
translator_instance = TalklasTranslator()
return translator_instance
@app.route('/api/translate-speech', methods=['POST'])
def api_translate_speech():
"""API endpoint for speech-to-speech translation"""
try:
# Check if required data is in the request
if 'audio' not in request.files:
return jsonify({
"error": "No audio file provided"
}), 400
audio_file = request.files['audio']
source_lang = request.form.get('source_lang', 'English')
target_lang = request.form.get('target_lang', 'Tagalog')
# Save temporary audio file
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio:
audio_file.save(temp_audio.name)
temp_audio_path = temp_audio.name
# Get translator and update languages
translator = get_translator()
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
translator.update_languages(source_code, target_code)
# Process the audio
results = translator.translate_speech(temp_audio_path)
# Convert audio to base64 for transmission
sample_rate, audio_data = results["output_audio"]
audio_bytes = io.BytesIO()
sf.write(audio_bytes, audio_data, sample_rate, format='WAV')
audio_base64 = base64.b64encode(audio_bytes.getvalue()).decode('utf-8')
# Clean up temporary file
os.unlink(temp_audio_path)
return jsonify({
"source_text": results["source_text"],
"translated_text": results["translated_text"],
"audio_base64": audio_base64,
"sample_rate": sample_rate,
"status": "success"
})
except Exception as e:
return jsonify({
"error": str(e),
"status": "error"
}), 500
@app.route('/api/translate-text', methods=['POST'])
def api_translate_text():
"""API endpoint for text-to-speech translation"""
try:
data = request.json
if not data or 'text' not in data:
return jsonify({
"error": "No text provided"
}), 400
text = data['text']
source_lang = data.get('source_lang', 'English')
target_lang = data.get('target_lang', 'Tagalog')
# Get translator and update languages
translator = get_translator()
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
translator.update_languages(source_code, target_code)
# Process the text
results = translator.translate_text_only(text)
# Convert audio to base64 for transmission
sample_rate, audio_data = results["output_audio"]
audio_bytes = io.BytesIO()
sf.write(audio_bytes, audio_data, sample_rate, format='WAV')
audio_base64 = base64.b64encode(audio_bytes.getvalue()).decode('utf-8')
return jsonify({
"source_text": results["source_text"],
"translated_text": results["translated_text"],
"audio_base64": audio_base64,
"sample_rate": sample_rate,
"status": "success"
})
except Exception as e:
return jsonify({
"error": str(e),
"status": "error"
}), 500
@app.route('/api/languages', methods=['GET'])
def get_languages():
"""Return available languages"""
return jsonify({
"languages": list(TalklasTranslator.LANGUAGE_MAPPING.keys())
})
# Keep the Gradio interface for users who directly access the Hugging Face space
def create_gradio_interface():
# Your existing Gradio interface code
# ...
# Run both the API server and Gradio
if __name__ == "__main__":
# Launch Gradio in a separate thread
import threading
demo = create_gradio_interface()
threading.Thread(target=demo.launch, kwargs={"share": True, "debug": False}).start()
# Run the Flask server
app.run(host='0.0.0.0', port=7860)