File size: 20,272 Bytes
f53ba4b
 
de2c35e
f53ba4b
 
 
 
 
 
 
 
 
 
 
 
de2c35e
 
224fa8d
 
de2c35e
f53ba4b
 
de2c35e
 
 
 
 
f53ba4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de2c35e
 
f53ba4b
 
 
 
 
de2c35e
f53ba4b
 
 
de2c35e
f53ba4b
 
de2c35e
 
f53ba4b
 
 
 
 
 
de2c35e
f53ba4b
 
de2c35e
f53ba4b
 
 
 
de2c35e
f53ba4b
de2c35e
f53ba4b
 
 
 
 
de2c35e
f53ba4b
 
 
 
 
 
 
 
 
 
 
de2c35e
f53ba4b
 
 
 
 
 
 
 
 
 
 
de2c35e
f53ba4b
 
 
 
 
 
de2c35e
f53ba4b
 
de2c35e
f53ba4b
 
de2c35e
 
f53ba4b
 
de2c35e
f53ba4b
 
 
de2c35e
f53ba4b
 
de2c35e
f53ba4b
 
 
de2c35e
f53ba4b
 
 
 
 
de2c35e
f53ba4b
de2c35e
f53ba4b
 
de2c35e
f53ba4b
 
 
de2c35e
f53ba4b
de2c35e
f53ba4b
 
 
 
 
de2c35e
f53ba4b
 
 
de2c35e
f53ba4b
 
de2c35e
f53ba4b
 
 
 
 
 
de2c35e
f53ba4b
de2c35e
f53ba4b
 
 
 
 
de2c35e
f53ba4b
 
de2c35e
f53ba4b
 
de2c35e
f53ba4b
 
de2c35e
f53ba4b
de2c35e
f53ba4b
 
 
 
 
de2c35e
f53ba4b
 
 
 
de2c35e
f53ba4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de2c35e
f53ba4b
 
 
de2c35e
f53ba4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de2c35e
 
 
 
 
224fa8d
de2c35e
 
 
224fa8d
de2c35e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224fa8d
de2c35e
224fa8d
de2c35e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224fa8d
 
 
de2c35e
224fa8d
de2c35e
 
 
 
 
 
 
 
224fa8d
de2c35e
 
 
224fa8d
 
 
 
de2c35e
224fa8d
de2c35e
224fa8d
de2c35e
 
 
 
224fa8d
de2c35e
 
 
224fa8d
de2c35e
 
 
 
 
 
 
 
 
 
 
 
 
 
224fa8d
de2c35e
224fa8d
de2c35e
 
 
 
 
 
 
 
 
224fa8d
 
 
 
de2c35e
224fa8d
de2c35e
224fa8d
de2c35e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f53ba4b
de2c35e
f53ba4b
de2c35e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
import os
import torch
import gradio as gr
import numpy as np
import soundfile as sf
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    VitsModel,
    AutoProcessor,
    AutoModelForCTC,
    WhisperProcessor,
    WhisperForConditionalGeneration
)
from typing import Optional, Tuple, Dict, List
from flask import Flask, request, jsonify
from flask_cors import CORS
import base64
import io
import tempfile

class TalklasTranslator:
    """
    Speech-to-Speech translation pipeline for Philippine languages.
    Uses MMS/Whisper for STT, NLLB for MT, and MMS for TTS.
    """

    LANGUAGE_MAPPING = {
        "English": "eng",
        "Tagalog": "tgl",
        "Cebuano": "ceb",
        "Ilocano": "ilo",
        "Waray": "war",
        "Pangasinan": "pag"
    }

    NLLB_LANGUAGE_CODES = {
        "eng": "eng_Latn",
        "tgl": "tgl_Latn",
        "ceb": "ceb_Latn",
        "ilo": "ilo_Latn",
        "war": "war_Latn",
        "pag": "pag_Latn"
    }

    def __init__(
        self,
        source_lang: str = "eng",
        target_lang: str = "tgl",
        device: Optional[str] = None
    ):
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self.source_lang = source_lang
        self.target_lang = target_lang
        self.sample_rate = 16000

        print(f"Initializing Talklas Translator on {self.device}")

        # Initialize models
        self._initialize_stt_model()
        self._initialize_mt_model()
        self._initialize_tts_model()

    def _initialize_stt_model(self):
        """Initialize speech-to-text model with fallback to Whisper"""
        try:
            print("Loading STT model...")
            try:
                # Try loading MMS model first
                self.stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
                self.stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")

                # Set language if available
                if self.source_lang in self.stt_processor.tokenizer.vocab.keys():
                    self.stt_processor.tokenizer.set_target_lang(self.source_lang)
                    self.stt_model.load_adapter(self.source_lang)
                    print(f"Loaded MMS STT model for {self.source_lang}")
                else:
                    print(f"Language {self.source_lang} not in MMS, using default")

            except Exception as mms_error:
                print(f"MMS loading failed: {mms_error}")
                # Fallback to Whisper
                print("Loading Whisper as fallback...")
                self.stt_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
                self.stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
                print("Loaded Whisper STT model")

            self.stt_model.to(self.device)

        except Exception as e:
            print(f"STT model initialization failed: {e}")
            raise RuntimeError("Could not initialize STT model")

    def _initialize_mt_model(self):
        """Initialize machine translation model"""
        try:
            print("Loading NLLB Translation model...")
            self.mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
            self.mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
            self.mt_model.to(self.device)
            print("NLLB Translation model loaded")
        except Exception as e:
            print(f"MT model initialization failed: {e}")
            raise

    def _initialize_tts_model(self):
        """Initialize text-to-speech model"""
        try:
            print("Loading TTS model...")
            try:
                self.tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
                self.tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{self.target_lang}")
                print(f"Loaded TTS model for {self.target_lang}")
            except Exception as tts_error:
                print(f"Target language TTS failed: {tts_error}")
                print("Falling back to English TTS")
                self.tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
                self.tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")

            self.tts_model.to(self.device)
        except Exception as e:
            print(f"TTS model initialization failed: {e}")
            raise

    def update_languages(self, source_lang: str, target_lang: str) -> str:
        """Update languages and reinitialize models if needed"""
        if source_lang == self.source_lang and target_lang == self.target_lang:
            return "Languages already set"

        self.source_lang = source_lang
        self.target_lang = target_lang

        # Only reinitialize models that depend on language
        self._initialize_stt_model()
        self._initialize_tts_model()

        return f"Languages updated to {source_lang}{target_lang}"

    def speech_to_text(self, audio_path: str) -> str:
        """Convert speech to text using loaded STT model"""
        try:
            waveform, sample_rate = sf.read(audio_path)

            if sample_rate != 16000:
                import librosa
                waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)

            inputs = self.stt_processor(
                waveform,
                sampling_rate=16000,
                return_tensors="pt"
            ).to(self.device)

            with torch.no_grad():
                if isinstance(self.stt_model, WhisperForConditionalGeneration):  # Whisper model
                    generated_ids = self.stt_model.generate(**inputs)
                    transcription = self.stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
                else:  # MMS model (Wav2Vec2ForCTC)
                    logits = self.stt_model(**inputs).logits
                    predicted_ids = torch.argmax(logits, dim=-1)
                    transcription = self.stt_processor.batch_decode(predicted_ids)[0]

            return transcription

        except Exception as e:
            print(f"Speech recognition failed: {e}")
            raise RuntimeError("Speech recognition failed")

    def translate_text(self, text: str) -> str:
        """Translate text using NLLB model"""
        try:
            source_code = self.NLLB_LANGUAGE_CODES[self.source_lang]
            target_code = self.NLLB_LANGUAGE_CODES[self.target_lang]

            self.mt_tokenizer.src_lang = source_code
            inputs = self.mt_tokenizer(text, return_tensors="pt").to(self.device)

            with torch.no_grad():
                generated_tokens = self.mt_model.generate(
                    **inputs,
                    forced_bos_token_id=self.mt_tokenizer.convert_tokens_to_ids(target_code),
                    max_length=448
                )

            return self.mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]

        except Exception as e:
            print(f"Translation failed: {e}")
            raise RuntimeError("Text translation failed")

    def text_to_speech(self, text: str) -> Tuple[int, np.ndarray]:
        """Convert text to speech"""
        try:
            inputs = self.tts_tokenizer(text, return_tensors="pt").to(self.device)

            with torch.no_grad():
                output = self.tts_model(**inputs)

            speech = output.waveform.cpu().numpy().squeeze()
            speech = (speech * 32767).astype(np.int16)

            return self.tts_model.config.sampling_rate, speech

        except Exception as e:
            print(f"Speech synthesis failed: {e}")
            raise RuntimeError("Speech synthesis failed")

    def translate_speech(self, audio_path: str) -> Dict:
        """Full speech-to-speech translation"""
        try:
            source_text = self.speech_to_text(audio_path)
            translated_text = self.translate_text(source_text)
            sample_rate, audio = self.text_to_speech(translated_text)

            return {
                "source_text": source_text,
                "translated_text": translated_text,
                "output_audio": (sample_rate, audio),
                "performance": "Translation successful"
            }
        except Exception as e:
            return {
                "source_text": "Error",
                "translated_text": "Error",
                "output_audio": (16000, np.zeros(1000, dtype=np.int16)),
                "performance": f"Error: {str(e)}"
            }

    def translate_text_only(self, text: str) -> Dict:
        """Text-to-speech translation"""
        try:
            translated_text = self.translate_text(text)
            sample_rate, audio = self.text_to_speech(translated_text)

            return {
                "source_text": text,
                "translated_text": translated_text,
                "output_audio": (sample_rate, audio),
                "performance": "Translation successful"
            }
        except Exception as e:
            return {
                "source_text": text,
                "translated_text": "Error",
                "output_audio": (16000, np.zeros(1000, dtype=np.int16)),
                "performance": f"Error: {str(e)}"
            }

class TranslatorSingleton:
    _instance = None

    @classmethod
    def get_instance(cls):
        if cls._instance is None:
            cls._instance = TalklasTranslator()
        return cls._instance

def process_audio(audio_path, source_lang, target_lang):
    """Process audio through the full translation pipeline"""
    # Validate input
    if not audio_path:
        return None, "No audio provided", "No translation available", "Please provide audio input"

    # Update languages
    source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
    target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]

    translator = TranslatorSingleton.get_instance()
    status = translator.update_languages(source_code, target_code)

    # Process the audio
    results = translator.translate_speech(audio_path)

    return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]

def process_text(text, source_lang, target_lang):
    """Process text through the translation pipeline"""
    # Validate input
    if not text:
        return None, "No text provided", "No translation available", "Please provide text input"

    # Update languages
    source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
    target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]

    translator = TranslatorSingleton.get_instance()
    status = translator.update_languages(source_code, target_code)

    # Process the text
    results = translator.translate_text_only(text)

    return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]

def create_gradio_interface():
    """Create and launch Gradio interface"""
    # Define language options
    languages = list(TalklasTranslator.LANGUAGE_MAPPING.keys())

    # Define the interface
    demo = gr.Blocks(title="Talklas - Speech & Text Translation")

    with demo:
        gr.Markdown("# Talklas: Speech-to-Speech Translation System")
        gr.Markdown("### Translate between Philippine Languages and English")

        with gr.Row():
            with gr.Column():
                source_lang = gr.Dropdown(
                    choices=languages,
                    value="English",
                    label="Source Language"
                )

                target_lang = gr.Dropdown(
                    choices=languages,
                    value="Tagalog",
                    label="Target Language"
                )

                language_status = gr.Textbox(label="Language Status")
                update_btn = gr.Button("Update Languages")

        with gr.Tabs():
            with gr.TabItem("Audio Input"):
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("### Audio Input")
                        audio_input = gr.Audio(
                            type="filepath",
                            label="Upload Audio File"
                        )
                        audio_translate_btn = gr.Button("Translate Audio", variant="primary")

                    with gr.Column():
                        gr.Markdown("### Output")
                        audio_output = gr.Audio(
                            label="Translated Speech",
                            type="numpy",
                            autoplay=True
                        )

            with gr.TabItem("Text Input"):
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("### Text Input")
                        text_input = gr.Textbox(
                            label="Enter text to translate",
                            lines=3
                        )
                        text_translate_btn = gr.Button("Translate Text", variant="primary")

                    with gr.Column():
                        gr.Markdown("### Output")
                        text_output = gr.Audio(
                            label="Translated Speech",
                            type="numpy",
                            autoplay=True
                        )

        with gr.Row():
            with gr.Column():
                source_text = gr.Textbox(label="Source Text")
                translated_text = gr.Textbox(label="Translated Text")
                performance_info = gr.Textbox(label="Performance Metrics")

        # Set up events
        update_btn.click(
            lambda source_lang, target_lang: TranslatorSingleton.get_instance().update_languages(
                TalklasTranslator.LANGUAGE_MAPPING[source_lang],
                TalklasTranslator.LANGUAGE_MAPPING[target_lang]
            ),
            inputs=[source_lang, target_lang],
            outputs=[language_status]
        )

        # Audio translate button click
        audio_translate_btn.click(
            process_audio,
            inputs=[audio_input, source_lang, target_lang],
            outputs=[audio_output, source_text, translated_text, performance_info]
        ).then(
            None,
            None,
            None,
            js="""() => {
                const audioElements = document.querySelectorAll('audio');
                if (audioElements.length > 0) {
                    const lastAudio = audioElements[audioElements.length - 1];
                    lastAudio.play().catch(error => {
                        console.warn('Autoplay failed:', error);
                        alert('Audio may require user interaction to play');
                    });
                }
            }"""
        )

        # Text translate button click
        text_translate_btn.click(
            process_text,
            inputs=[text_input, source_lang, target_lang],
            outputs=[text_output, source_text, translated_text, performance_info]
        ).then(
            None,
            None,
            None,
            js="""() => {
                const audioElements = document.querySelectorAll('audio');
                if (audioElements.length > 0) {
                    const lastAudio = audioElements[audioElements.length - 1];
                    lastAudio.play().catch(error => {
                        console.warn('Autoplay failed:', error);
                        alert('Audio may require user interaction to play');
                    });
                }
            }"""
        )

    return demo

# Create Flask app
app = Flask(__name__)
CORS(app)  # This allows cross-origin requests

# Initialize the translator singleton
translator_instance = None

def get_translator():
    global translator_instance
    if translator_instance is None:
        translator_instance = TalklasTranslator()
    return translator_instance

@app.route('/api/translate-speech', methods=['POST'])
def api_translate_speech():
    """API endpoint for speech-to-speech translation"""
    try:
        # Check if required data is in the request
        if 'audio' not in request.files:
            return jsonify({
                "error": "No audio file provided"
            }), 400
            
        audio_file = request.files['audio']
        source_lang = request.form.get('source_lang', 'English')
        target_lang = request.form.get('target_lang', 'Tagalog')
        
        # Save temporary audio file
        with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio:
            audio_file.save(temp_audio.name)
            temp_audio_path = temp_audio.name
        
        # Get translator and update languages
        translator = get_translator()
        source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
        target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
        translator.update_languages(source_code, target_code)
        
        # Process the audio
        results = translator.translate_speech(temp_audio_path)
        
        # Convert audio to base64 for transmission
        sample_rate, audio_data = results["output_audio"]
        audio_bytes = io.BytesIO()
        sf.write(audio_bytes, audio_data, sample_rate, format='WAV')
        audio_base64 = base64.b64encode(audio_bytes.getvalue()).decode('utf-8')
        
        # Clean up temporary file
        os.unlink(temp_audio_path)
        
        return jsonify({
            "source_text": results["source_text"],
            "translated_text": results["translated_text"],
            "audio_base64": audio_base64,
            "sample_rate": sample_rate,
            "status": "success"
        })
        
    except Exception as e:
        return jsonify({
            "error": str(e),
            "status": "error"
        }), 500

@app.route('/api/translate-text', methods=['POST'])
def api_translate_text():
    """API endpoint for text-to-speech translation"""
    try:
        data = request.json
        if not data or 'text' not in data:
            return jsonify({
                "error": "No text provided"
            }), 400
            
        text = data['text']
        source_lang = data.get('source_lang', 'English')
        target_lang = data.get('target_lang', 'Tagalog')
        
        # Get translator and update languages
        translator = get_translator()
        source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
        target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
        translator.update_languages(source_code, target_code)
        
        # Process the text
        results = translator.translate_text_only(text)
        
        # Convert audio to base64 for transmission
        sample_rate, audio_data = results["output_audio"]
        audio_bytes = io.BytesIO()
        sf.write(audio_bytes, audio_data, sample_rate, format='WAV')
        audio_base64 = base64.b64encode(audio_bytes.getvalue()).decode('utf-8')
        
        return jsonify({
            "source_text": results["source_text"],
            "translated_text": results["translated_text"],
            "audio_base64": audio_base64,
            "sample_rate": sample_rate,
            "status": "success"
        })
        
    except Exception as e:
        return jsonify({
            "error": str(e),
            "status": "error"
        }), 500

@app.route('/api/languages', methods=['GET'])
def get_languages():
    """Return available languages"""
    return jsonify({
        "languages": list(TalklasTranslator.LANGUAGE_MAPPING.keys())
    })

# Keep the Gradio interface for users who directly access the Hugging Face space
def create_gradio_interface():
    # Your existing Gradio interface code
    # ...

# Run both the API server and Gradio
if __name__ == "__main__":
    # Launch Gradio in a separate thread
    import threading
    demo = create_gradio_interface()
    threading.Thread(target=demo.launch, kwargs={"share": True, "debug": False}).start()
    
    # Run the Flask server
    app.run(host='0.0.0.0', port=7860)