Spaces:
Running
Running
import cv2 | |
import numpy as np | |
import gradio as gr | |
from PIL import Image | |
def resize_to_512(img: Image.Image) -> Image.Image: | |
if img.size != (512, 512): | |
return img.resize((512, 512)) | |
return img | |
def gaussian_blur(img: Image.Image, kernel_size: int): | |
img = resize_to_512(img) | |
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
blurred = cv2.GaussianBlur(img_cv, (kernel_size | 1, kernel_size | 1), 0) | |
return cv2.cvtColor(blurred, cv2.COLOR_BGR2RGB) | |
def lens_blur(img: Image.Image, max_blur_radius: int): | |
img = resize_to_512(img) | |
original = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
original_rgb = cv2.cvtColor(original, cv2.COLOR_BGR2RGB) | |
# Create synthetic depth map | |
depth_norm = np.zeros((original.shape[0], original.shape[1]), dtype=np.float32) | |
cv2.circle(depth_norm, (original.shape[1] // 2, original.shape[0] // 2), 100, 1, -1) | |
depth_norm = cv2.GaussianBlur(depth_norm, (21, 21), 0) | |
blurred_image = np.zeros_like(original_rgb) | |
for i in range(original.shape[0]): | |
for j in range(original.shape[1]): | |
blur_radius = int(depth_norm[i, j] * max_blur_radius) | |
if blur_radius % 2 == 0: | |
blur_radius += 1 | |
x_min = max(j - blur_radius, 0) | |
x_max = min(j + blur_radius, original.shape[1]) | |
y_min = max(i - blur_radius, 0) | |
y_max = min(i + blur_radius, original.shape[0]) | |
roi = original_rgb[y_min:y_max, x_min:x_max] | |
if blur_radius > 1: | |
blurred_roi = cv2.GaussianBlur(roi, (blur_radius, blur_radius), 0) | |
try: | |
blurred_image[i, j] = blurred_roi[ | |
blur_radius // 2, blur_radius // 2 | |
] | |
except: | |
blurred_image[i, j] = original_rgb[i, j] | |
else: | |
blurred_image[i, j] = original_rgb[i, j] | |
return blurred_image | |
with gr.Blocks() as demo: | |
gr.Markdown("## Gaussian and Lens Blur App") | |
with gr.Row(): | |
image_input = gr.Image(type="pil", label="Upload an Image") | |
with gr.Row(): | |
kernel_slider = gr.Slider(1, 49, value=11, step=2, label="Gaussian Kernel Size") | |
max_blur_slider = gr.Slider( | |
1, 50, value=15, step=1, label="Max Lens Blur Radius" | |
) | |
with gr.Row(): | |
gaussian_output = gr.Image(label="Gaussian Blurred Image") | |
lens_output = gr.Image(label="Depth-Based Lens Blurred Image") | |
with gr.Row(): | |
blur_btn = gr.Button("Apply Blur") | |
blur_btn.click( | |
fn=gaussian_blur, inputs=[image_input, kernel_slider], outputs=gaussian_output | |
) | |
blur_btn.click( | |
fn=lens_blur, inputs=[image_input, max_blur_slider], outputs=lens_output | |
) | |
demo.launch() | |