Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
|
7 |
+
def resize_to_512(img: Image.Image) -> Image.Image:
|
8 |
+
if img.size != (512, 512):
|
9 |
+
return img.resize((512, 512))
|
10 |
+
return img
|
11 |
+
|
12 |
+
|
13 |
+
def gaussian_blur(img: Image.Image, kernel_size: int):
|
14 |
+
img = resize_to_512(img)
|
15 |
+
img_cv = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
16 |
+
blurred = cv2.GaussianBlur(img_cv, (kernel_size | 1, kernel_size | 1), 0)
|
17 |
+
return cv2.cvtColor(blurred, cv2.COLOR_BGR2RGB)
|
18 |
+
|
19 |
+
|
20 |
+
def lens_blur(img: Image.Image, max_blur_radius: int):
|
21 |
+
img = resize_to_512(img)
|
22 |
+
original = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
23 |
+
original_rgb = cv2.cvtColor(original, cv2.COLOR_BGR2RGB)
|
24 |
+
|
25 |
+
# Create synthetic depth map
|
26 |
+
depth_norm = np.zeros((original.shape[0], original.shape[1]), dtype=np.float32)
|
27 |
+
cv2.circle(depth_norm, (original.shape[1] // 2, original.shape[0] // 2), 100, 1, -1)
|
28 |
+
depth_norm = cv2.GaussianBlur(depth_norm, (21, 21), 0)
|
29 |
+
|
30 |
+
blurred_image = np.zeros_like(original_rgb)
|
31 |
+
|
32 |
+
for i in range(original.shape[0]):
|
33 |
+
for j in range(original.shape[1]):
|
34 |
+
blur_radius = int(depth_norm[i, j] * max_blur_radius)
|
35 |
+
if blur_radius % 2 == 0:
|
36 |
+
blur_radius += 1
|
37 |
+
|
38 |
+
x_min = max(j - blur_radius, 0)
|
39 |
+
x_max = min(j + blur_radius, original.shape[1])
|
40 |
+
y_min = max(i - blur_radius, 0)
|
41 |
+
y_max = min(i + blur_radius, original.shape[0])
|
42 |
+
|
43 |
+
roi = original_rgb[y_min:y_max, x_min:x_max]
|
44 |
+
|
45 |
+
if blur_radius > 1:
|
46 |
+
blurred_roi = cv2.GaussianBlur(roi, (blur_radius, blur_radius), 0)
|
47 |
+
try:
|
48 |
+
blurred_image[i, j] = blurred_roi[
|
49 |
+
blur_radius // 2, blur_radius // 2
|
50 |
+
]
|
51 |
+
except:
|
52 |
+
blurred_image[i, j] = original_rgb[i, j]
|
53 |
+
else:
|
54 |
+
blurred_image[i, j] = original_rgb[i, j]
|
55 |
+
|
56 |
+
return blurred_image
|
57 |
+
|
58 |
+
|
59 |
+
with gr.Blocks() as demo:
|
60 |
+
gr.Markdown("## Gaussian and Lens Blur App")
|
61 |
+
with gr.Row():
|
62 |
+
image_input = gr.Image(type="pil", label="Upload an Image")
|
63 |
+
with gr.Row():
|
64 |
+
kernel_slider = gr.Slider(1, 49, value=11, step=2, label="Gaussian Kernel Size")
|
65 |
+
max_blur_slider = gr.Slider(
|
66 |
+
1, 50, value=15, step=1, label="Max Lens Blur Radius"
|
67 |
+
)
|
68 |
+
with gr.Row():
|
69 |
+
gaussian_output = gr.Image(label="Gaussian Blurred Image")
|
70 |
+
lens_output = gr.Image(label="Depth-Based Lens Blurred Image")
|
71 |
+
with gr.Row():
|
72 |
+
blur_btn = gr.Button("Apply Blur")
|
73 |
+
|
74 |
+
blur_btn.click(
|
75 |
+
fn=gaussian_blur, inputs=[image_input, kernel_slider], outputs=gaussian_output
|
76 |
+
)
|
77 |
+
blur_btn.click(
|
78 |
+
fn=lens_blur, inputs=[image_input, max_blur_slider], outputs=lens_output
|
79 |
+
)
|
80 |
+
|
81 |
+
demo.launch()
|