JayLacoma's picture
Update app.py
7677f97 verified
import yfinance as yf
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import gradio as gr
import io
from PIL import Image
import matplotlib.pyplot as plt
from datetime import datetime
import plotly.express as px
import warnings
import timesfm
from prophet import Prophet
class StockDataFetcher:
"""Handles fetching and preprocessing stock data"""
@staticmethod
def fetch_stock_data(ticker, start_date, end_date):
"""Fetch and preprocess stock data"""
stock_data = yf.download(ticker, start=start_date, end=end_date)
# Handle MultiIndex columns if present
if isinstance(stock_data.columns, pd.MultiIndex):
stock_data.columns = stock_data.columns.droplevel(level=1)
# Standardize column names
stock_data.columns = ['Close', 'High', 'Low', 'Open', 'Volume']
return stock_data
# Function for TimesFM forecasting
def timesfm_forecast(ticker, start_date, end_date):
try:
# Fetch historical data using the StockDataFetcher class
stock_data = StockDataFetcher.fetch_stock_data(ticker, start_date, end_date)
# Reset index to have 'Date' as a column
stock_data.reset_index(inplace=True)
# Select relevant columns and rename them
df = stock_data[['Date', 'Close']].rename(columns={'Date': 'ds', 'Close': 'y'})
# Ensure the dates are in datetime format
df['ds'] = pd.to_datetime(df['ds'])
# Add a unique identifier for the time series
df['unique_id'] = ticker
# Initialize the TimesFM model
tfm = timesfm.TimesFm(
hparams=timesfm.TimesFmHparams(
backend="pytorch",
per_core_batch_size=32,
horizon_len=30, # Predicting the next 30 days
input_patch_len=32,
output_patch_len=128,
num_layers=50,
model_dims=1280,
use_positional_embedding=False,
),
checkpoint=timesfm.TimesFmCheckpoint(
huggingface_repo_id="google/timesfm-2.0-500m-pytorch"
),
)
# Forecast using the prepared DataFrame
forecast_df = tfm.forecast_on_df(
inputs=df,
freq="D", # Daily frequency
value_name="y",
num_jobs=-1,
)
# Ensure forecast_df has the correct columns
forecast_df.rename(columns={"timesfm": "forecast"}, inplace=True)
# Create an interactive plot with Plotly
fig = go.Figure()
# Add Actual Prices Line
fig.add_trace(go.Scatter(x=df["ds"], y=df["y"],
mode="lines", name="Actual Prices",
line=dict(color="#00FFFF", width=2))) # Brighter cyan
# Add Forecasted Prices Line
fig.add_trace(go.Scatter(x=forecast_df["ds"], y=forecast_df["forecast"],
mode="lines", name="Forecasted Prices",
line=dict(color="#FF00FF", width=2, dash="dash"))) # Brighter magenta
# Layout Customization
fig.update_layout(
title=f"{ticker} Stock Price Forecast (TimesFM)",
xaxis_title="Date",
yaxis_title="Price",
template="plotly_dark", # Dark Theme
hovermode="x unified", # Show all values on hover
legend=dict(bgcolor="rgba(0,0,0,0.8)", bordercolor="white", borderwidth=1),
plot_bgcolor="#111111", # Slightly lighter than black for contrast
paper_bgcolor="#111111",
font=dict(color="white", size=12),
margin=dict(l=40, r=40, t=50, b=40),
)
# Add grid lines for better readability
fig.update_xaxes(showgrid=True, gridcolor="rgba(255,255,255,0.1)")
fig.update_yaxes(showgrid=True, gridcolor="rgba(255,255,255,0.1)")
return fig # Return the Plotly figure for Gradio
except Exception as e:
return f"Error: {str(e)}"
# Function for Prophet forecasting
def prophet_forecast(ticker, start_date, end_date):
try:
# Download stock market data using the StockDataFetcher class
df = StockDataFetcher.fetch_stock_data(ticker, start_date, end_date)
# Reset the index to get 'Date' back as a column
df_plot = df.reset_index()
# Prepare the data for Prophet
df1 = df_plot[['Date', 'Close']].rename(columns={'Date': 'ds', 'Close': 'y'})
# Fit the model
m = Prophet()
m.fit(df1)
# Create future dataframe and make predictions
future = m.make_future_dataframe(periods=30, freq='D')
forecast = m.predict(future)
# Plotting stock closing prices with trend
fig1 = go.Figure()
# Add actual closing prices
fig1.add_trace(go.Scatter(
x=df1['ds'],
y=df1['y'],
mode='lines',
name='Actual Price',
line=dict(color='#36D7B7', width=2)
))
# Add trend component
fig1.add_trace(go.Scatter(
x=forecast['ds'],
y=forecast['trend'],
mode='lines',
name='Trend',
line=dict(color='#FF6B6B', width=2)
))
fig1.update_layout(
title=f'{ticker} Price and Trend',
plot_bgcolor='#111111',
paper_bgcolor='#111111',
font=dict(color='white', size=12),
margin=dict(l=40, r=40, t=50, b=40),
xaxis=dict(showgrid=True, gridcolor="rgba(255,255,255,0.1)"),
yaxis=dict(showgrid=True, gridcolor="rgba(255,255,255,0.1)"),
legend=dict(bgcolor="rgba(0,0,0,0.8)", bordercolor="white", borderwidth=1)
)
# Plotting forecast with confidence interval
forecast_40 = forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(40)
fig2 = go.Figure()
# Add forecast line
fig2.add_trace(go.Scatter(
x=forecast_40['ds'],
y=forecast_40['yhat'],
mode='lines',
name='Forecast',
line=dict(color='#FF6B6B', width=2)
))
# Add confidence interval
fig2.add_trace(go.Scatter(
x=forecast_40["ds"].tolist() + forecast_40["ds"].tolist()[::-1],
y=forecast_40["yhat_upper"].tolist() + forecast_40["yhat_lower"].tolist()[::-1],
fill="toself",
fillcolor="rgba(78, 205, 196, 0.2)",
line=dict(color="rgba(255,255,255,0)"),
name="Confidence Interval"
))
fig2.update_layout(
title=f'{ticker} 30 Days Forecast (Prophet)',
plot_bgcolor='#111111',
paper_bgcolor='#111111',
font=dict(color='white', size=12),
margin=dict(l=40, r=40, t=50, b=40),
xaxis=dict(showgrid=True, gridcolor="rgba(255,255,255,0.1)"),
yaxis=dict(showgrid=True, gridcolor="rgba(255,255,255,0.1)"),
legend=dict(bgcolor="rgba(0,0,0,0.8)", bordercolor="white", borderwidth=1)
)
# Create components figure
components_fig = go.Figure()
# Add components if they exist in the forecast
if 'yearly' in forecast.columns:
yearly_pattern = forecast.iloc[-365:] if len(forecast) > 365 else forecast
components_fig.add_trace(go.Scatter(
x=yearly_pattern['ds'],
y=yearly_pattern['yearly'],
mode='lines',
name='Yearly Pattern',
line=dict(color='#4ECDC4', width=2)
))
components_fig.update_layout(
title=f'{ticker} Forecast Components',
xaxis_title='Date',
yaxis_title='Value',
plot_bgcolor='#111111',
paper_bgcolor='#111111',
font=dict(color='white', size=12),
legend=dict(bgcolor="rgba(0,0,0,0.8)", bordercolor="white", borderwidth=1),
margin=dict(l=40, r=40, t=50, b=40),
xaxis=dict(showgrid=True, gridcolor="rgba(255,255,255,0.1)"),
yaxis=dict(showgrid=True, gridcolor="rgba(255,255,255,0.1)")
)
# For backwards compatibility, still create the matplotlib figure
try:
plt.style.use('dark_background')
fig, ax = plt.subplots(figsize=(10, 8), facecolor='#111111')
plt.rcParams.update({
'text.color': 'white',
'axes.labelcolor': 'white',
'axes.edgecolor': 'white',
'xtick.color': 'white',
'ytick.color': 'white',
'grid.color': 'gray',
'figure.facecolor': '#111111',
'axes.facecolor': '#111111',
'savefig.facecolor': '#111111',
})
m.plot_components(forecast, ax=ax)
for ax in plt.gcf().get_axes():
ax.set_facecolor('#111111')
for spine in ax.spines.values():
spine.set_color('white')
ax.tick_params(colors='white')
ax.title.set_color('white')
for line in ax.get_lines():
if line.get_color() == 'b':
line.set_color('#C678DD')
else:
line.set_color('#FF6B6B')
plt.tight_layout()
buf = io.BytesIO()
plt.savefig(buf, format='png', facecolor='#111111')
buf.seek(0)
plt.close(fig)
img = Image.open(buf)
return fig1, fig2, components_fig
except Exception as e:
print(f"Error with Matplotlib components: {e}")
return fig1, fig2, components_fig
except Exception as e:
return f"Error: {str(e)}", f"Error: {str(e)}", None
# Functions for technical analysis
def calculate_sma(df, window):
return df['Close'].rolling(window=window).mean()
def calculate_ema(df, window):
return df['Close'].ewm(span=window, adjust=False).mean()
def calculate_macd(df):
short_ema = df['Close'].ewm(span=12, adjust=False).mean()
long_ema = df['Close'].ewm(span=26, adjust=False).mean()
macd = short_ema - long_ema
signal = macd.ewm(span=9, adjust=False).mean()
return macd, signal
def calculate_rsi(df):
delta = df['Close'].diff()
gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
return rsi
def calculate_bollinger_bands(df):
middle_bb = df['Close'].rolling(window=20).mean()
upper_bb = middle_bb + 2 * df['Close'].rolling(window=20).std()
lower_bb = middle_bb - 2 * df['Close'].rolling(window=20).std()
return middle_bb, upper_bb, lower_bb
def calculate_stochastic_oscillator(df):
lowest_low = df['Low'].rolling(window=14).min()
highest_high = df['High'].rolling(window=14).max()
slowk = ((df['Close'] - lowest_low) / (highest_high - lowest_low)) * 100
slowd = slowk.rolling(window=3).mean()
return slowk, slowd
def calculate_cmf(df, window=20):
mfv = ((df['Close'] - df['Low']) - (df['High'] - df['Close'])) / (df['High'] - df['Low']) * df['Volume']
cmf = mfv.rolling(window=window).sum() / df['Volume'].rolling(window=window).sum()
return cmf
def calculate_cci(df, window=20):
"""Calculate Commodity Channel Index (CCI)."""
typical_price = (df['High'] + df['Low'] + df['Close']) / 3
sma = typical_price.rolling(window=window).mean()
mean_deviation = (typical_price - sma).abs().rolling(window=window).mean()
cci = (typical_price - sma) / (0.015 * mean_deviation)
return cci
import numpy as np
import pandas as pd
def generate_trading_signals(df):
# Calculate various indicators
df['SMA_30'] = calculate_sma(df, 30)
df['SMA_100'] = calculate_sma(df, 100)
df['EMA_12'] = calculate_ema(df, 12)
df['EMA_26'] = calculate_ema(df, 26)
df['RSI'] = calculate_rsi(df)
df['MiddleBB'], df['UpperBB'], df['LowerBB'] = calculate_bollinger_bands(df)
df['SlowK'], df['SlowD'] = calculate_stochastic_oscillator(df)
df['CMF'] = calculate_cmf(df)
df['CCI'] = calculate_cci(df)
# Ultra-strict SMA Signal - Require at least 3% difference
df['SMA_Signal'] = np.where((df['SMA_30'] > df['SMA_100']) &
((df['SMA_30'] - df['SMA_100']) / df['SMA_100'] > 0.03), 1, 0)
macd, signal = calculate_macd(df)
# Ultra-strict MACD Signal - Require a difference of at least 1.0
df['MACD_Signal'] = np.select([
(macd > signal) & (macd.shift(1) <= signal.shift(1)) & ((macd - signal) > 1.0),
(macd < signal) & (macd.shift(1) >= signal.shift(1)) & ((signal - macd) > 1.0)
], [1, -1], default=0)
# Ultra-strict RSI Signal - Extreme thresholds
df['RSI_Signal'] = np.where(df['RSI'] < 15, 1, 0)
df['RSI_Signal'] = np.where(df['RSI'] > 90, -1, df['RSI_Signal'])
# Ultra-strict Bollinger Bands Signal - Require extreme deviations
df['BB_Signal'] = np.where(df['Close'] < df['LowerBB'] * 0.97, 1, 0)
df['BB_Signal'] = np.where(df['Close'] > df['UpperBB'] * 1.03, -1, df['BB_Signal'])
# Ultra-strict Stochastic Signal - Extreme overbought/oversold conditions
df['Stochastic_Signal'] = np.where((df['SlowK'] < 10) & (df['SlowD'] < 10), 1, 0)
df['Stochastic_Signal'] = np.where((df['SlowK'] > 95) & (df['SlowD'] > 95), -1, df['Stochastic_Signal'])
# Ultra-strict CMF Signal - Require stronger money flow confirmation
df['CMF_Signal'] = np.where(df['CMF'] > 0.4, -1, np.where(df['CMF'] < -0.4, 1, 0))
# Ultra-strict CCI Signal - Require extreme deviations
df['CCI_Signal'] = np.where(df['CCI'] < -220, 1, 0)
df['CCI_Signal'] = np.where(df['CCI'] > 220, -1, df['CCI_Signal'])
# Combined signal for ultra-strict confirmations
df['Combined_Signal'] = df[['MACD_Signal','RSI_Signal', 'BB_Signal',
'Stochastic_Signal', 'CMF_Signal', 'CCI_Signal']].sum(axis=1)
return df
def plot_combined_signals(df, ticker):
# Create a figure
fig = go.Figure()
# Add closing price trace
fig.add_trace(go.Scatter(
x=df.index, y=df['Close'],
mode='lines',
name='Closing Price',
line=dict(color='#36D7B7', width=2) # Brighter pink
))
# Add buy signals
buy_signals = df[df['Combined_Signal'] >= 3]
fig.add_trace(go.Scatter(
x=buy_signals.index, y=buy_signals['Close'],
mode='markers',
marker=dict(symbol='triangle-up', size=12, color='lightgreen'),
name='Buy Signal'
))
# Add sell signals
sell_signals = df[df['Combined_Signal'] <= -3]
fig.add_trace(go.Scatter(
x=sell_signals.index, y=sell_signals['Close'],
mode='markers',
marker=dict(symbol='triangle-down', size=12, color='red'),
name='Sell Signal'
))
# Combined signal trace
fig.add_trace(go.Scatter(
x=df.index, y=df['Combined_Signal'],
mode='lines',
name='Combined Signal',
line=dict(color='#36A2EB', width=1), # Blue
yaxis='y2'
))
# Update layout
fig.update_layout(
title=f'{ticker}: Stock Price and Combined Trading Signal (Last 120 Days)',
xaxis=dict(
title='Date',
showgrid=True,
gridcolor="rgba(255,255,255,0.1)"
),
yaxis=dict(
title='Price',
side='left',
showgrid=True,
gridcolor="rgba(255,255,255,0.1)"
),
yaxis2=dict(
title='Combined Signal',
overlaying='y',
side='right',
showgrid=False
),
plot_bgcolor='#111111',
paper_bgcolor='#111111',
font=dict(color='white', size=12),
legend=dict(
bgcolor="rgba(0,0,0,0.8)",
bordercolor="white",
borderwidth=1
),
margin=dict(l=40, r=40, t=50, b=40)
)
return fig
def plot_individual_signals(df, ticker):
# Create a figure
fig = go.Figure()
# Add closing price line
fig.add_trace(go.Scatter(
x=df.index, y=df['Close'],
mode='lines',
name='Closing Price',
line=dict(color='#36A2EB', width=2)
))
# Refined neon colors for signal indicators
signal_colors = {
'MACD_Signal': {'buy': '#39FF14', 'sell': '#FF073A'}, # Neon green for buy, neon red for sell
'RSI_Signal': {'buy': '#39FF14', 'sell': '#FF073A'}, # Neon green for buy, neon red for sell
'BB_Signal': {'buy': '#39FF14', 'sell': '#FF073A'}, # Neon green for buy, neon red for sell
'Stochastic_Signal': {'buy': '#39FF14', 'sell': '#FF073A'}, # Neon green for buy, neon red for sell
'CMF_Signal': {'buy': '#39FF14', 'sell': '#FF073A'}, # Neon green for buy, neon red for sell
'CCI_Signal': {'buy': '#39FF14', 'sell': '#FF073A'} # Neon green for buy, neon red for sell
}
# Add buy/sell signals for each indicator
signal_names = ['MACD_Signal', 'RSI_Signal', 'BB_Signal',
'Stochastic_Signal', 'CMF_Signal',
'CCI_Signal']
for signal in signal_names:
buy_signals = df[df[signal] == 1]
sell_signals = df[df[signal] == -1]
fig.add_trace(go.Scatter(
x=buy_signals.index, y=buy_signals['Close'],
mode='markers',
marker=dict(
symbol='triangle-up',
size=12,
color=signal_colors[signal]['buy']
),
name=f'{signal} Buy Signal'
))
fig.add_trace(go.Scatter(
x=sell_signals.index, y=sell_signals['Close'],
mode='markers',
marker=dict(
symbol='triangle-down',
size=12,
color=signal_colors[signal]['sell']
),
name=f'{signal} Sell Signal'
))
fig.update_layout(
title=f'{ticker}: Individual Trading Signals',
xaxis=dict(
title='Date',
showgrid=True,
gridcolor="rgba(255,255,255,0.1)"
),
yaxis=dict(
title='Price',
side='left',
showgrid=True,
gridcolor="rgba(255,255,255,0.1)"
),
plot_bgcolor='#111111',
paper_bgcolor='#111111',
font=dict(color='white', size=12),
legend=dict(
bgcolor="rgba(0,0,0,0.8)",
bordercolor="white",
borderwidth=1
),
margin=dict(l=40, r=40, t=50, b=40)
)
return fig
def technical_analysis(ticker, start_date, end_date):
try:
# Download stock data using the StockDataFetcher class
df = StockDataFetcher.fetch_stock_data(ticker, start_date, end_date)
# Generate signals
df = generate_trading_signals(df)
# Last 120 days for plotting
df_last_120 = df.tail(120)
# Plot combined signals
fig_signals = plot_combined_signals(df_last_120, ticker)
# Plot individual signals
fig_individual_signals = plot_individual_signals(df_last_120, ticker)
return fig_signals, fig_individual_signals
except Exception as e:
return f"Error: {str(e)}", f"Error: {str(e)}"
# Create Gradio interface
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
gr.Markdown("# Advanced Stock Analysis & Forecasting App")
gr.Markdown("Enter a stock ticker, start date, and end date to analyze and forecast stock prices.")
with gr.Row():
ticker_input = gr.Textbox(label="Enter Stock Ticker", value="NVDA")
start_date_input = gr.Textbox(label="Enter Start Date (YYYY-MM-DD)", value="2022-01-01")
end_date_input = gr.Textbox(label="Enter End Date (YYYY-MM-DD)", value="2026-01-01")
# Create tabs for different analysis types
with gr.Tabs() as tabs:
with gr.TabItem("Technical Analysis"):
analysis_button = gr.Button("Generate Technical Analysis")
individual_signals = gr.Plot(label="Individual Trading Signals")
combined_signals = gr.Plot(label="Combined Trading Signals")
# Connect button to function
analysis_button.click(
technical_analysis,
inputs=[ticker_input, start_date_input, end_date_input],
outputs=[combined_signals, individual_signals]
)
with gr.TabItem("TimesFM Forecast"):
timesfm_button = gr.Button("Generate TimesFM Forecast")
timesfm_plot = gr.Plot(label="TimesFM Stock Price Forecast")
# Connect button to function
timesfm_button.click(
timesfm_forecast,
inputs=[ticker_input, start_date_input, end_date_input],
outputs=timesfm_plot
)
with gr.TabItem("Prophet Forecast"):
prophet_button = gr.Button("Generate Prophet Forecast")
prophet_recent_plot = gr.Plot(label="Recent Stock Prices")
prophet_forecast_plot = gr.Plot(label="Prophet 30-Day Forecast")
prophet_components = gr.Plot(label="Forecast Components") # Changed from gr.Image to gr.Plot
# Connect button to function
prophet_button.click(
prophet_forecast,
inputs=[ticker_input, start_date_input, end_date_input],
outputs=[prophet_recent_plot, prophet_forecast_plot, prophet_components]
)
# Launch the app
demo.launch()