File size: 22,107 Bytes
7d07255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887baad
 
 
342a331
7d07255
 
 
 
 
 
 
 
 
 
 
887baad
 
 
7d07255
 
 
887baad
 
 
 
 
 
 
 
ffdae89
887baad
 
 
 
7d07255
887baad
ffdae89
5b60c58
7d07255
887baad
ffdae89
887baad
 
3be8e75
 
887baad
 
ffdae89
887baad
7d07255
 
 
887baad
7d07255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b60c58
7d07255
 
 
 
745809a
7d07255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7677f97
7d07255
 
 
 
2ca51c9
7d07255
2ca51c9
 
 
 
 
 
792ea8f
3d35d6d
7d07255
ffdae89
7d07255
342a331
745809a
7d07255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
import yfinance as yf
import pandas as pd
import numpy as np
import plotly.graph_objects as go
import gradio as gr
import io
from PIL import Image
import matplotlib.pyplot as plt
from datetime import datetime
import plotly.express as px
import warnings
import timesfm
from prophet import Prophet

class StockDataFetcher:
    """Handles fetching and preprocessing stock data"""
    
    @staticmethod
    def fetch_stock_data(ticker, start_date, end_date):
        """Fetch and preprocess stock data"""
        stock_data = yf.download(ticker, start=start_date, end=end_date)
        
        # Handle MultiIndex columns if present
        if isinstance(stock_data.columns, pd.MultiIndex):
            stock_data.columns = stock_data.columns.droplevel(level=1)
            
        # Standardize column names
        stock_data.columns = ['Close', 'High', 'Low', 'Open', 'Volume']
        
        return stock_data

# Function for TimesFM forecasting
def timesfm_forecast(ticker, start_date, end_date):
    try:
        # Fetch historical data using the StockDataFetcher class
        stock_data = StockDataFetcher.fetch_stock_data(ticker, start_date, end_date)

        # Reset index to have 'Date' as a column
        stock_data.reset_index(inplace=True)

        # Select relevant columns and rename them
        df = stock_data[['Date', 'Close']].rename(columns={'Date': 'ds', 'Close': 'y'})

        # Ensure the dates are in datetime format
        df['ds'] = pd.to_datetime(df['ds'])

        # Add a unique identifier for the time series
        df['unique_id'] = ticker

        # Initialize the TimesFM model
        tfm = timesfm.TimesFm(
            hparams=timesfm.TimesFmHparams(
                backend="pytorch",
                per_core_batch_size=32,
                horizon_len=30,  # Predicting the next 30 days
                input_patch_len=32,
                output_patch_len=128,
                num_layers=50,
                model_dims=1280,
                use_positional_embedding=False,
            ),
            checkpoint=timesfm.TimesFmCheckpoint(
                huggingface_repo_id="google/timesfm-2.0-500m-pytorch"
            ),
        )

        # Forecast using the prepared DataFrame
        forecast_df = tfm.forecast_on_df(
            inputs=df,
            freq="D",  # Daily frequency
            value_name="y",
            num_jobs=-1,
        )

        # Ensure forecast_df has the correct columns
        forecast_df.rename(columns={"timesfm": "forecast"}, inplace=True)

        # Create an interactive plot with Plotly
        fig = go.Figure()

        # Add Actual Prices Line
        fig.add_trace(go.Scatter(x=df["ds"], y=df["y"], 
                                mode="lines", name="Actual Prices", 
                                line=dict(color="#00FFFF", width=2)))  # Brighter cyan

        # Add Forecasted Prices Line
        fig.add_trace(go.Scatter(x=forecast_df["ds"], y=forecast_df["forecast"], 
                                mode="lines", name="Forecasted Prices", 
                                line=dict(color="#FF00FF", width=2, dash="dash")))  # Brighter magenta

        # Layout Customization
        fig.update_layout(
            title=f"{ticker} Stock Price Forecast (TimesFM)",
            xaxis_title="Date",
            yaxis_title="Price",
            template="plotly_dark",  # Dark Theme
            hovermode="x unified",  # Show all values on hover
            legend=dict(bgcolor="rgba(0,0,0,0.8)", bordercolor="white", borderwidth=1),
            plot_bgcolor="#111111",  # Slightly lighter than black for contrast
            paper_bgcolor="#111111",
            font=dict(color="white", size=12),
            margin=dict(l=40, r=40, t=50, b=40),
        )

        # Add grid lines for better readability
        fig.update_xaxes(showgrid=True, gridcolor="rgba(255,255,255,0.1)")
        fig.update_yaxes(showgrid=True, gridcolor="rgba(255,255,255,0.1)")

        return fig  # Return the Plotly figure for Gradio
    
    except Exception as e:
        return f"Error: {str(e)}"

# Function for Prophet forecasting
def prophet_forecast(ticker, start_date, end_date):
    try:
        # Download stock market data using the StockDataFetcher class
        df = StockDataFetcher.fetch_stock_data(ticker, start_date, end_date)
        
        # Reset the index to get 'Date' back as a column
        df_plot = df.reset_index()
        
        # Prepare the data for Prophet
        df1 = df_plot[['Date', 'Close']].rename(columns={'Date': 'ds', 'Close': 'y'})
        
        # Fit the model
        m = Prophet()
        m.fit(df1)
        
        # Create future dataframe and make predictions
        future = m.make_future_dataframe(periods=30, freq='D')
        forecast = m.predict(future)
        
        # Plotting stock closing prices with trend
        fig1 = go.Figure()
        
        # Add actual closing prices
        fig1.add_trace(go.Scatter(
            x=df1['ds'], 
            y=df1['y'],
            mode='lines',
            name='Actual Price',
            line=dict(color='#36D7B7', width=2)
        ))
        
        # Add trend component
        fig1.add_trace(go.Scatter(
            x=forecast['ds'], 
            y=forecast['trend'],
            mode='lines',
            name='Trend',
            line=dict(color='#FF6B6B', width=2)
        ))
        
        fig1.update_layout(
            title=f'{ticker} Price and Trend',
            plot_bgcolor='#111111',
            paper_bgcolor='#111111',
            font=dict(color='white', size=12),
            margin=dict(l=40, r=40, t=50, b=40),
            xaxis=dict(showgrid=True, gridcolor="rgba(255,255,255,0.1)"),
            yaxis=dict(showgrid=True, gridcolor="rgba(255,255,255,0.1)"),
            legend=dict(bgcolor="rgba(0,0,0,0.8)", bordercolor="white", borderwidth=1)
        )
        
        # Plotting forecast with confidence interval
        forecast_40 = forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(40)
        fig2 = go.Figure()
        
        # Add forecast line
        fig2.add_trace(go.Scatter(
            x=forecast_40['ds'],
            y=forecast_40['yhat'],
            mode='lines',
            name='Forecast',
            line=dict(color='#FF6B6B', width=2)
        ))
        
        # Add confidence interval
        fig2.add_trace(go.Scatter(
            x=forecast_40["ds"].tolist() + forecast_40["ds"].tolist()[::-1],
            y=forecast_40["yhat_upper"].tolist() + forecast_40["yhat_lower"].tolist()[::-1],
            fill="toself",
            fillcolor="rgba(78, 205, 196, 0.2)",
            line=dict(color="rgba(255,255,255,0)"),
            name="Confidence Interval"
        ))
        
        fig2.update_layout(
            title=f'{ticker} 30 Days Forecast (Prophet)',
            plot_bgcolor='#111111',
            paper_bgcolor='#111111',
            font=dict(color='white', size=12),
            margin=dict(l=40, r=40, t=50, b=40),
            xaxis=dict(showgrid=True, gridcolor="rgba(255,255,255,0.1)"),
            yaxis=dict(showgrid=True, gridcolor="rgba(255,255,255,0.1)"),
            legend=dict(bgcolor="rgba(0,0,0,0.8)", bordercolor="white", borderwidth=1)
        )
        
        # Create components figure
        components_fig = go.Figure()
        
        # Add components if they exist in the forecast
        if 'yearly' in forecast.columns:
            yearly_pattern = forecast.iloc[-365:] if len(forecast) > 365 else forecast
            components_fig.add_trace(go.Scatter(
                x=yearly_pattern['ds'], 
                y=yearly_pattern['yearly'],
                mode='lines',
                name='Yearly Pattern',
                line=dict(color='#4ECDC4', width=2)
            ))
        
        
        components_fig.update_layout(
            title=f'{ticker} Forecast Components',
            xaxis_title='Date',
            yaxis_title='Value',
            plot_bgcolor='#111111',
            paper_bgcolor='#111111',
            font=dict(color='white', size=12),
            legend=dict(bgcolor="rgba(0,0,0,0.8)", bordercolor="white", borderwidth=1),
            margin=dict(l=40, r=40, t=50, b=40),
            xaxis=dict(showgrid=True, gridcolor="rgba(255,255,255,0.1)"),
            yaxis=dict(showgrid=True, gridcolor="rgba(255,255,255,0.1)")
        )
        
        # For backwards compatibility, still create the matplotlib figure
        try:
            plt.style.use('dark_background')
            fig, ax = plt.subplots(figsize=(10, 8), facecolor='#111111')
            
            plt.rcParams.update({
                'text.color': 'white',
                'axes.labelcolor': 'white',
                'axes.edgecolor': 'white',
                'xtick.color': 'white',
                'ytick.color': 'white',
                'grid.color': 'gray',
                'figure.facecolor': '#111111',
                'axes.facecolor': '#111111',
                'savefig.facecolor': '#111111',
            })
            
            m.plot_components(forecast, ax=ax)
            
            for ax in plt.gcf().get_axes():
                ax.set_facecolor('#111111')
                for spine in ax.spines.values():
                    spine.set_color('white')
                ax.tick_params(colors='white')
                ax.title.set_color('white')
                for line in ax.get_lines():
                    if line.get_color() == 'b':
                        line.set_color('#C678DD')
                    else:
                        line.set_color('#FF6B6B')
                
            plt.tight_layout()
            
            buf = io.BytesIO()
            plt.savefig(buf, format='png', facecolor='#111111')
            buf.seek(0)
            plt.close(fig)
            
            img = Image.open(buf)
            
            return fig1, fig2, components_fig
        except Exception as e:
            print(f"Error with Matplotlib components: {e}")
            return fig1, fig2, components_fig
    
    except Exception as e:
        return f"Error: {str(e)}", f"Error: {str(e)}", None
    
# Functions for technical analysis
def calculate_sma(df, window):
    return df['Close'].rolling(window=window).mean()

def calculate_ema(df, window):
    return df['Close'].ewm(span=window, adjust=False).mean()

def calculate_macd(df):
    short_ema = df['Close'].ewm(span=12, adjust=False).mean()
    long_ema = df['Close'].ewm(span=26, adjust=False).mean()
    macd = short_ema - long_ema
    signal = macd.ewm(span=9, adjust=False).mean()
    return macd, signal

def calculate_rsi(df):
    delta = df['Close'].diff()
    gain = (delta.where(delta > 0, 0)).rolling(window=14).mean()
    loss = (-delta.where(delta < 0, 0)).rolling(window=14).mean()
    rs = gain / loss
    rsi = 100 - (100 / (1 + rs))
    return rsi

def calculate_bollinger_bands(df):
    middle_bb = df['Close'].rolling(window=20).mean()
    upper_bb = middle_bb + 2 * df['Close'].rolling(window=20).std()
    lower_bb = middle_bb - 2 * df['Close'].rolling(window=20).std()
    return middle_bb, upper_bb, lower_bb

def calculate_stochastic_oscillator(df):
    lowest_low = df['Low'].rolling(window=14).min()
    highest_high = df['High'].rolling(window=14).max()
    slowk = ((df['Close'] - lowest_low) / (highest_high - lowest_low)) * 100
    slowd = slowk.rolling(window=3).mean()
    return slowk, slowd

def calculate_cmf(df, window=20):
    mfv = ((df['Close'] - df['Low']) - (df['High'] - df['Close'])) / (df['High'] - df['Low']) * df['Volume']
    cmf = mfv.rolling(window=window).sum() / df['Volume'].rolling(window=window).sum()
    return cmf

def calculate_cci(df, window=20):
    """Calculate Commodity Channel Index (CCI)."""
    typical_price = (df['High'] + df['Low'] + df['Close']) / 3
    sma = typical_price.rolling(window=window).mean()
    mean_deviation = (typical_price - sma).abs().rolling(window=window).mean()
    cci = (typical_price - sma) / (0.015 * mean_deviation)
    return cci

import numpy as np
import pandas as pd

def generate_trading_signals(df):
    # Calculate various indicators
    df['SMA_30'] = calculate_sma(df, 30)
    df['SMA_100'] = calculate_sma(df, 100)
    df['EMA_12'] = calculate_ema(df, 12)
    df['EMA_26'] = calculate_ema(df, 26)
    df['RSI'] = calculate_rsi(df)
    df['MiddleBB'], df['UpperBB'], df['LowerBB'] = calculate_bollinger_bands(df)
    df['SlowK'], df['SlowD'] = calculate_stochastic_oscillator(df)
    df['CMF'] = calculate_cmf(df)
    df['CCI'] = calculate_cci(df)

    # Ultra-strict SMA Signal - Require at least 3% difference
    df['SMA_Signal'] = np.where((df['SMA_30'] > df['SMA_100']) & 
                                 ((df['SMA_30'] - df['SMA_100']) / df['SMA_100'] > 0.03), 1, 0)
    
    macd, signal = calculate_macd(df)
    
    # Ultra-strict MACD Signal - Require a difference of at least 1.0
    df['MACD_Signal'] = np.select([
        (macd > signal) & (macd.shift(1) <= signal.shift(1)) & ((macd - signal) > 1.0),
        (macd < signal) & (macd.shift(1) >= signal.shift(1)) & ((signal - macd) > 1.0)
    ], [1, -1], default=0)
    
    # Ultra-strict RSI Signal - Extreme thresholds
    df['RSI_Signal'] = np.where(df['RSI'] < 15, 1, 0)
    df['RSI_Signal'] = np.where(df['RSI'] > 90, -1, df['RSI_Signal'])
    
    # Ultra-strict Bollinger Bands Signal - Require extreme deviations
    df['BB_Signal'] = np.where(df['Close'] < df['LowerBB'] * 0.97, 1, 0)
    df['BB_Signal'] = np.where(df['Close'] > df['UpperBB'] * 1.03, -1, df['BB_Signal'])
    
    # Ultra-strict Stochastic Signal - Extreme overbought/oversold conditions
    df['Stochastic_Signal'] = np.where((df['SlowK'] < 10) & (df['SlowD'] < 10), 1, 0)
    df['Stochastic_Signal'] = np.where((df['SlowK'] > 95) & (df['SlowD'] > 95), -1, df['Stochastic_Signal'])
    
    # Ultra-strict CMF Signal - Require stronger money flow confirmation
    df['CMF_Signal'] = np.where(df['CMF'] > 0.4, -1, np.where(df['CMF'] < -0.4, 1, 0))
    
    # Ultra-strict CCI Signal - Require extreme deviations
    df['CCI_Signal'] = np.where(df['CCI'] < -220, 1, 0)
    df['CCI_Signal'] = np.where(df['CCI'] > 220, -1, df['CCI_Signal'])
    
    # Combined signal for ultra-strict confirmations
    df['Combined_Signal'] = df[['MACD_Signal','RSI_Signal', 'BB_Signal', 
                                'Stochastic_Signal', 'CMF_Signal', 'CCI_Signal']].sum(axis=1)
    
    return df


def plot_combined_signals(df, ticker):
    # Create a figure
    fig = go.Figure()

    # Add closing price trace
    fig.add_trace(go.Scatter(
        x=df.index, y=df['Close'], 
        mode='lines', 
        name='Closing Price', 
        line=dict(color='#36D7B7', width=2)  # Brighter pink
    ))

    # Add buy signals
    buy_signals = df[df['Combined_Signal'] >= 3]
    fig.add_trace(go.Scatter(
        x=buy_signals.index, y=buy_signals['Close'], 
        mode='markers', 
        marker=dict(symbol='triangle-up', size=12, color='lightgreen'), 
        name='Buy Signal'
    ))

    # Add sell signals
    sell_signals = df[df['Combined_Signal'] <= -3]
    fig.add_trace(go.Scatter(
        x=sell_signals.index, y=sell_signals['Close'], 
        mode='markers', 
        marker=dict(symbol='triangle-down', size=12, color='red'), 
        name='Sell Signal'
    ))

    # Combined signal trace
    fig.add_trace(go.Scatter(
        x=df.index, y=df['Combined_Signal'], 
        mode='lines', 
        name='Combined Signal', 
        line=dict(color='#36A2EB', width=1), # Blue
        yaxis='y2'
    ))

    # Update layout
    fig.update_layout(
        title=f'{ticker}: Stock Price and Combined Trading Signal (Last 120 Days)',
        xaxis=dict(
            title='Date',
            showgrid=True,
            gridcolor="rgba(255,255,255,0.1)"
        ),
        yaxis=dict(
            title='Price',
            side='left',
            showgrid=True,
            gridcolor="rgba(255,255,255,0.1)"
        ),
        yaxis2=dict(
            title='Combined Signal',
            overlaying='y',
            side='right',
            showgrid=False
        ),
        plot_bgcolor='#111111',
        paper_bgcolor='#111111',
        font=dict(color='white', size=12),
        legend=dict(
            bgcolor="rgba(0,0,0,0.8)",
            bordercolor="white",
            borderwidth=1
        ),
        margin=dict(l=40, r=40, t=50, b=40)
    )

    return fig

def plot_individual_signals(df, ticker):
    # Create a figure
    fig = go.Figure()
    
    # Add closing price line
    fig.add_trace(go.Scatter(
        x=df.index, y=df['Close'], 
        mode='lines', 
        name='Closing Price', 
        line=dict(color='#36A2EB', width=2)  
    ))


    
    # Refined neon colors for signal indicators
    signal_colors = {
        'MACD_Signal': {'buy': '#39FF14', 'sell': '#FF073A'},  # Neon green for buy, neon red for sell
        'RSI_Signal': {'buy': '#39FF14', 'sell': '#FF073A'},   # Neon green for buy, neon red for sell
        'BB_Signal': {'buy': '#39FF14', 'sell': '#FF073A'},    # Neon green for buy, neon red for sell
        'Stochastic_Signal': {'buy': '#39FF14', 'sell': '#FF073A'},  # Neon green for buy, neon red for sell
        'CMF_Signal': {'buy': '#39FF14', 'sell': '#FF073A'},    # Neon green for buy, neon red for sell
        'CCI_Signal': {'buy': '#39FF14', 'sell': '#FF073A'}    # Neon green for buy, neon red for sell
    }

    # Add buy/sell signals for each indicator
    signal_names = ['MACD_Signal', 'RSI_Signal', 'BB_Signal', 
                    'Stochastic_Signal', 'CMF_Signal', 
                    'CCI_Signal'] 
    
    for signal in signal_names:
        buy_signals = df[df[signal] == 1]
        sell_signals = df[df[signal] == -1]
        
        fig.add_trace(go.Scatter(
            x=buy_signals.index, y=buy_signals['Close'], 
            mode='markers', 
            marker=dict(
                symbol='triangle-up',
                size=12,
                color=signal_colors[signal]['buy']
            ), 
            name=f'{signal} Buy Signal'
        ))

        fig.add_trace(go.Scatter(
            x=sell_signals.index, y=sell_signals['Close'], 
            mode='markers', 
            marker=dict(
                symbol='triangle-down',
                size=12,
                color=signal_colors[signal]['sell']
            ), 
            name=f'{signal} Sell Signal'
        ))

    fig.update_layout(
        title=f'{ticker}: Individual Trading Signals',
        xaxis=dict(
            title='Date',
            showgrid=True,
            gridcolor="rgba(255,255,255,0.1)"
        ),
        yaxis=dict(
            title='Price',
            side='left',
            showgrid=True,
            gridcolor="rgba(255,255,255,0.1)"
        ),
        plot_bgcolor='#111111',
        paper_bgcolor='#111111',
        font=dict(color='white', size=12),
        legend=dict(
            bgcolor="rgba(0,0,0,0.8)",
            bordercolor="white",
            borderwidth=1
        ),
        margin=dict(l=40, r=40, t=50, b=40)
    )

    return fig

def technical_analysis(ticker, start_date, end_date):
    try:
        # Download stock data using the StockDataFetcher class
        df = StockDataFetcher.fetch_stock_data(ticker, start_date, end_date)

        # Generate signals
        df = generate_trading_signals(df)
        
        # Last 120 days for plotting
        df_last_120 = df.tail(120)

        # Plot combined signals
        fig_signals = plot_combined_signals(df_last_120, ticker)

        # Plot individual signals
        fig_individual_signals = plot_individual_signals(df_last_120, ticker)

        return fig_signals, fig_individual_signals
    
    except Exception as e:
        return f"Error: {str(e)}", f"Error: {str(e)}"

# Create Gradio interface
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
    gr.Markdown("# Advanced Stock Analysis & Forecasting App")
    gr.Markdown("Enter a stock ticker, start date, and end date to analyze and forecast stock prices.")
    
    with gr.Row():
        ticker_input = gr.Textbox(label="Enter Stock Ticker", value="NVDA")
        start_date_input = gr.Textbox(label="Enter Start Date (YYYY-MM-DD)", value="2022-01-01")
        end_date_input = gr.Textbox(label="Enter End Date (YYYY-MM-DD)", value="2026-01-01")
    
    # Create tabs for different analysis types
    with gr.Tabs() as tabs:

        with gr.TabItem("Technical Analysis"):
            analysis_button = gr.Button("Generate Technical Analysis")
        
            individual_signals = gr.Plot(label="Individual Trading Signals")
            combined_signals = gr.Plot(label="Combined Trading Signals")
            
            # Connect button to function
            analysis_button.click(
                technical_analysis,
                inputs=[ticker_input, start_date_input, end_date_input],
                outputs=[combined_signals, individual_signals]
            )

        with gr.TabItem("TimesFM Forecast"):
            timesfm_button = gr.Button("Generate TimesFM Forecast")
            timesfm_plot = gr.Plot(label="TimesFM Stock Price Forecast")
            
            # Connect button to function
            timesfm_button.click(
                timesfm_forecast,
                inputs=[ticker_input, start_date_input, end_date_input],
                outputs=timesfm_plot
            )
            
        with gr.TabItem("Prophet Forecast"):
            prophet_button = gr.Button("Generate Prophet Forecast")
            prophet_recent_plot = gr.Plot(label="Recent Stock Prices")
            prophet_forecast_plot = gr.Plot(label="Prophet 30-Day Forecast")
            prophet_components = gr.Plot(label="Forecast Components")  # Changed from gr.Image to gr.Plot
            
            # Connect button to function
            prophet_button.click(
                prophet_forecast,
                inputs=[ticker_input, start_date_input, end_date_input],
                outputs=[prophet_recent_plot, prophet_forecast_plot, prophet_components]
            )
            


# Launch the app
demo.launch()