|
|
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM |
|
from sentence_transformers import SentenceTransformer |
|
import torch |
|
import os |
|
|
|
class ClassifierModel: |
|
def __init__(self): |
|
self.model = None |
|
self.tokenizer = None |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.load_classifier_model() |
|
|
|
def load_classifier_model(self): |
|
""" |
|
Load the fine-tuned XLM-RoBERTa model and tokenizer for toxicity classification. |
|
""" |
|
try: |
|
model_name = "JanviMl/xlm-roberta-toxic-classifier-capstone" |
|
print(f"Loading classifier model: {model_name}") |
|
self.model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
self.model.to(self.device) |
|
self.model.eval() |
|
print("Classifier model loaded successfully") |
|
except Exception as e: |
|
print(f"Error loading classifier model: {str(e)}") |
|
raise |
|
|
|
classifier_model = ClassifierModel() |
|
|
|
class ParaphraserModel: |
|
def __init__(self): |
|
self.model = None |
|
self.tokenizer = None |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.load_paraphraser_model() |
|
|
|
def load_paraphraser_model(self): |
|
""" |
|
Load the fine-tuned Granite 3.2-2B-Instruct model and tokenizer for paraphrasing. |
|
""" |
|
try: |
|
model_name = "ibm-granite/granite-3.2-2b-instruct" |
|
print(f"Loading paraphraser model: {model_name}") |
|
self.model = AutoModelForCausalLM.from_pretrained(model_name) |
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
if self.tokenizer.pad_token is None or self.tokenizer.pad_token == self.tokenizer.eos_token: |
|
self.tokenizer.pad_token = "<pad>" |
|
self.model.config.pad_token_id = self.tokenizer.convert_tokens_to_ids("<pad>") |
|
self.model.to(self.device) |
|
self.model.eval() |
|
print("Paraphraser model loaded successfully") |
|
except Exception as e: |
|
print(f"Error loading paraphraser model: {str(e)}") |
|
raise |
|
|
|
paraphraser_model = ParaphraserModel() |
|
|
|
class MetricsModels: |
|
def __init__(self): |
|
self.sentence_bert = None |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
self.load_sentence_bert() |
|
|
|
def load_sentence_bert(self): |
|
""" |
|
Load the Sentence-BERT model for computing semantic similarity. |
|
""" |
|
try: |
|
model_name = "sentence-transformers/all-MiniLM-L6-v2" |
|
print(f"Loading Sentence-BERT model: {model_name}") |
|
self.sentence_bert = SentenceTransformer(model_name, device=self.device) |
|
print("Sentence-BERT model loaded successfully") |
|
except Exception as e: |
|
print(f"Error loading Sentence-BERT model: {str(e)}") |
|
raise |
|
|
|
metrics_models = MetricsModels() |