# model_loader.py from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM from sentence_transformers import SentenceTransformer import torch import os class ClassifierModel: def __init__(self): self.model = None self.tokenizer = None self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.load_classifier_model() def load_classifier_model(self): """ Load the fine-tuned XLM-RoBERTa model and tokenizer for toxicity classification. """ try: model_name = "JanviMl/xlm-roberta-toxic-classifier-capstone" print(f"Loading classifier model: {model_name}") self.model = AutoModelForSequenceClassification.from_pretrained(model_name) self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model.to(self.device) self.model.eval() print("Classifier model loaded successfully") except Exception as e: print(f"Error loading classifier model: {str(e)}") raise classifier_model = ClassifierModel() class ParaphraserModel: def __init__(self): self.model = None self.tokenizer = None self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.load_paraphraser_model() def load_paraphraser_model(self): """ Load the fine-tuned Granite 3.2-2B-Instruct model and tokenizer for paraphrasing. """ try: model_name = "ibm-granite/granite-3.2-2b-instruct" print(f"Loading paraphraser model: {model_name}") self.model = AutoModelForCausalLM.from_pretrained(model_name) self.tokenizer = AutoTokenizer.from_pretrained(model_name) # Set a distinct pad token to avoid conflict with eos token if self.tokenizer.pad_token is None or self.tokenizer.pad_token == self.tokenizer.eos_token: self.tokenizer.pad_token = "" self.model.config.pad_token_id = self.tokenizer.convert_tokens_to_ids("") self.model.to(self.device) self.model.eval() print("Paraphraser model loaded successfully") except Exception as e: print(f"Error loading paraphraser model: {str(e)}") raise paraphraser_model = ParaphraserModel() class MetricsModels: def __init__(self): self.sentence_bert = None self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.load_sentence_bert() def load_sentence_bert(self): """ Load the Sentence-BERT model for computing semantic similarity. """ try: model_name = "sentence-transformers/all-MiniLM-L6-v2" print(f"Loading Sentence-BERT model: {model_name}") self.sentence_bert = SentenceTransformer(model_name, device=self.device) print("Sentence-BERT model loaded successfully") except Exception as e: print(f"Error loading Sentence-BERT model: {str(e)}") raise metrics_models = MetricsModels()