Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import gradio as gr
|
3 |
+
from classifier import classify_toxic_comment
|
4 |
+
|
5 |
+
# Clear function for resetting the UI
|
6 |
+
def clear_inputs():
|
7 |
+
return "", 0, "", []
|
8 |
+
|
9 |
+
# Custom CSS for styling
|
10 |
+
custom_css = """
|
11 |
+
.gr-button-primary {
|
12 |
+
background-color: #4CAF50 !important;
|
13 |
+
color: white !important;
|
14 |
+
}
|
15 |
+
.gr-button-secondary {
|
16 |
+
background-color: #f44336 !important;
|
17 |
+
color: white !important;
|
18 |
+
}
|
19 |
+
.gr-textbox textarea {
|
20 |
+
border: 2px solid #2196F3 !important;
|
21 |
+
border-radius: 8px !important;
|
22 |
+
}
|
23 |
+
.gr-slider {
|
24 |
+
background-color: #e0e0e0 !important;
|
25 |
+
border-radius: 10px !important;
|
26 |
+
}
|
27 |
+
"""
|
28 |
+
|
29 |
+
# Main UI function
|
30 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
31 |
+
gr.Markdown(
|
32 |
+
"""
|
33 |
+
# Toxic Comment Classifier
|
34 |
+
Enter a comment below to check if it's toxic or non-toxic. This app uses a fine-tuned XLM-RoBERTa model to classify comments as part of a four-stage pipeline for automated toxic comment moderation.
|
35 |
+
"""
|
36 |
+
)
|
37 |
+
|
38 |
+
with gr.Row():
|
39 |
+
with gr.Column(scale=3):
|
40 |
+
comment_input = gr.Textbox(
|
41 |
+
label="Your Comment",
|
42 |
+
placeholder="Type your comment here...",
|
43 |
+
lines=3,
|
44 |
+
max_lines=5
|
45 |
+
)
|
46 |
+
with gr.Column(scale=1):
|
47 |
+
submit_btn = gr.Button("Classify Comment", variant="primary")
|
48 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
49 |
+
|
50 |
+
gr.Examples(
|
51 |
+
examples=[
|
52 |
+
"I love this community, it's so supportive!",
|
53 |
+
"You are an idiot and should leave this platform.",
|
54 |
+
"This app is amazing, great work!"
|
55 |
+
],
|
56 |
+
inputs=comment_input,
|
57 |
+
label="Try these examples:"
|
58 |
+
)
|
59 |
+
|
60 |
+
with gr.Row():
|
61 |
+
with gr.Column(scale=2):
|
62 |
+
prediction_output = gr.Textbox(label="Prediction", placeholder="Prediction will appear here...")
|
63 |
+
with gr.Column(scale=1):
|
64 |
+
confidence_output = gr.Slider(
|
65 |
+
label="Confidence",
|
66 |
+
minimum=0,
|
67 |
+
maximum=1,
|
68 |
+
value=0,
|
69 |
+
interactive=False
|
70 |
+
)
|
71 |
+
|
72 |
+
with gr.Row():
|
73 |
+
label_display = gr.HTML()
|
74 |
+
threshold_display = gr.HTML()
|
75 |
+
|
76 |
+
with gr.Accordion("Prediction History", open=False):
|
77 |
+
history_output = gr.JSON(label="Previous Predictions")
|
78 |
+
|
79 |
+
with gr.Accordion("Provide Feedback", open=False):
|
80 |
+
feedback_input = gr.Radio(
|
81 |
+
choices=["Yes, the prediction was correct", "No, the prediction was incorrect"],
|
82 |
+
label="Was this prediction correct?"
|
83 |
+
)
|
84 |
+
feedback_comment = gr.Textbox(label="Additional Comments (optional)", placeholder="Let us know your thoughts...")
|
85 |
+
feedback_submit = gr.Button("Submit Feedback")
|
86 |
+
feedback_output = gr.Textbox(label="Feedback Status")
|
87 |
+
|
88 |
+
def handle_classification(comment, history):
|
89 |
+
if history is None:
|
90 |
+
history = []
|
91 |
+
prediction, confidence, color = classify_toxic_comment(comment)
|
92 |
+
history.append({"comment": comment, "prediction": prediction, "confidence": confidence})
|
93 |
+
threshold_message = "High Confidence" if confidence >= 0.7 else "Low Confidence"
|
94 |
+
threshold_color = "green" if confidence >= 0.7 else "orange"
|
95 |
+
return prediction, confidence, color, history, threshold_message, threshold_color
|
96 |
+
|
97 |
+
def handle_feedback(feedback, comment):
|
98 |
+
return f"Thank you for your feedback: {feedback}\nAdditional comment: {comment}"
|
99 |
+
|
100 |
+
submit_btn.click(
|
101 |
+
fn=lambda: ("Classifying...", 0, "", None, "", ""), # Show loading state
|
102 |
+
inputs=[],
|
103 |
+
outputs=[prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display]
|
104 |
+
).then(
|
105 |
+
fn=handle_classification,
|
106 |
+
inputs=[comment_input, history_output],
|
107 |
+
outputs=[prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display]
|
108 |
+
).then(
|
109 |
+
fn=lambda prediction, confidence, color: f"<span style='color: {color}; font-size: 20px; font-weight: bold;'>{prediction}</span>",
|
110 |
+
inputs=[prediction_output, confidence_output, label_display],
|
111 |
+
outputs=label_display
|
112 |
+
).then(
|
113 |
+
fn=lambda threshold_message, threshold_color: f"<span style='color: {threshold_color}; font-size: 16px;'>{threshold_message}</span>",
|
114 |
+
inputs=[threshold_display, threshold_display],
|
115 |
+
outputs=threshold_display
|
116 |
+
)
|
117 |
+
|
118 |
+
feedback_submit.click(
|
119 |
+
fn=handle_feedback,
|
120 |
+
inputs=[feedback_input, feedback_comment],
|
121 |
+
outputs=feedback_output
|
122 |
+
)
|
123 |
+
|
124 |
+
clear_btn.click(
|
125 |
+
fn=clear_inputs,
|
126 |
+
inputs=[],
|
127 |
+
outputs=[comment_input, confidence_output, label_display, history_output]
|
128 |
+
)
|
129 |
+
|
130 |
+
gr.Markdown(
|
131 |
+
"""
|
132 |
+
---
|
133 |
+
**About**: This app is part of a four-stage pipeline for automated toxic comment moderation with emotional intelligence via RLHF. Built with ❤️ using Hugging Face and Gradio.
|
134 |
+
"""
|
135 |
+
)
|
136 |
+
|
137 |
+
demo.launch()
|