Create classifier.py
Browse files- classifier.py +27 -0
classifier.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# classifier.py
|
2 |
+
import torch
|
3 |
+
from model_loader import model, tokenizer
|
4 |
+
|
5 |
+
def classify_toxic_comment(comment):
|
6 |
+
"""
|
7 |
+
Classify a comment as toxic or non-toxic using the fine-tuned XLM-RoBERTa model.
|
8 |
+
Returns the prediction label, confidence, and color for UI display.
|
9 |
+
"""
|
10 |
+
if not comment.strip():
|
11 |
+
return "Error: Please enter a comment.", None, None
|
12 |
+
|
13 |
+
# Tokenize the input comment
|
14 |
+
inputs = tokenizer(comment, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
15 |
+
|
16 |
+
# Run inference
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model(**inputs)
|
19 |
+
logits = outputs.logits
|
20 |
+
|
21 |
+
# Get the predicted class (0 = non-toxic, 1 = toxic)
|
22 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
23 |
+
label = "Toxic" if predicted_class == 1 else "Non-Toxic"
|
24 |
+
confidence = torch.softmax(logits, dim=1)[0][predicted_class].item()
|
25 |
+
label_color = "red" if label == "Toxic" else "green"
|
26 |
+
|
27 |
+
return f"Prediction: {label}", confidence, label_color
|