JanviMl commited on
Commit
77af61f
·
verified ·
1 Parent(s): ad0b71a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -19
app.py CHANGED
@@ -7,7 +7,7 @@ def clear_inputs():
7
  Reset all UI input and output fields to their default values.
8
  Returns a tuple of empty or default values for all UI components.
9
  """
10
- return "", 0, "", [], "", "", "", "", 0, "", "", "", "", "", "", "", ""
11
 
12
  custom_css = """
13
  /* General Styling */
@@ -184,11 +184,9 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
184
  paraphrased_toxicity_output = gr.Textbox(label="Paraphrased Toxicity Score", placeholder="Toxicity score will appear here...")
185
  paraphrased_bias_output = gr.Textbox(label="Paraphrased Bias Score", placeholder="Bias score will appear here...")
186
  semantic_similarity_output = gr.Textbox(label="Semantic Similarity", placeholder="Semantic similarity score will appear here...")
187
- emotion_shift_output = gr.Textbox(label="Emotion Shift", placeholder="Emotion shift will appear here...")
188
  empathy_score_output = gr.Textbox(label="Empathy Score", placeholder="Empathy score will appear here...")
189
  bleu_score_output = gr.Textbox(label="BLEU Score", placeholder="BLEU score will appear here...")
190
  rouge_scores_output = gr.Textbox(label="ROUGE Scores", placeholder="ROUGE scores will appear here...")
191
- entailment_score_output = gr.Textbox(label="Entailment Score (Factual Consistency)", placeholder="Entailment score will appear here...")
192
 
193
  with gr.Row():
194
  with gr.Column(scale=1):
@@ -212,8 +210,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
212
  prediction, confidence, color, toxicity_score, bias_score,
213
  paraphrased_comment, paraphrased_prediction, paraphrased_confidence,
214
  paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
215
- semantic_similarity, emotion_shift, empathy_score,
216
- bleu_score, rouge_scores, entailment_score
217
  ) = classify_toxic_comment(comment)
218
 
219
  history.append({
@@ -228,11 +225,9 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
228
  "paraphrased_toxicity_score": paraphrased_toxicity_score,
229
  "paraphrased_bias_score": paraphrased_bias_score,
230
  "semantic_similarity": semantic_similarity,
231
- "emotion_shift": emotion_shift,
232
  "empathy_score": empathy_score,
233
  "bleu_score": bleu_score,
234
- "rouge_scores": rouge_scores,
235
- "entailment_score": entailment_score
236
  })
237
 
238
  threshold_message = "High Confidence" if confidence >= 0.7 else "Low Confidence"
@@ -251,14 +246,12 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
251
  if paraphrased_prediction else ""
252
  )
253
  semantic_similarity_display = f"{semantic_similarity} (Scale: 0 to 1, higher is better)" if semantic_similarity is not None else "N/A"
254
- emotion_shift_display = emotion_shift if emotion_shift else "N/A"
255
  empathy_score_display = f"{empathy_score} (Scale: 0 to 1, higher indicates more empathy)" if empathy_score is not None else "N/A"
256
  bleu_score_display = f"{bleu_score} (Scale: 0 to 1, higher is better)" if bleu_score is not None else "N/A"
257
  rouge_scores_display = (
258
  f"ROUGE-1: {rouge_scores['rouge1']}, ROUGE-2: {rouge_scores['rouge2']}, ROUGE-L: {rouge_scores['rougeL']}"
259
  if rouge_scores else "N/A"
260
  )
261
- entailment_score_display = f"{entailment_score} (Scale: 0 to 1, higher indicates better consistency)" if entailment_score is not None else "N/A"
262
 
263
  prediction_class = "toxic-indicator" if "Toxic" in prediction else "nontoxic-indicator"
264
  prediction_html = f"<span class='{prediction_class}' style='color: {color}; font-size: 20px; font-weight: bold;'>{prediction}</span>"
@@ -268,8 +261,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
268
  toxicity_display, bias_display,
269
  paraphrased_comment_display, paraphrased_prediction_display, paraphrased_confidence_display,
270
  paraphrased_toxicity_display, paraphrased_bias_display, paraphrased_label_html,
271
- semantic_similarity_display, emotion_shift_display, empathy_score_display,
272
- bleu_score_display, rouge_scores_display, entailment_score_display
273
  )
274
 
275
  def handle_feedback(feedback, comment):
@@ -282,7 +274,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
282
  "Paraphrasing... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>", 0,
283
  "Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>", "",
284
  "Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>",
285
- "Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>",
286
  "Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>"
287
  ),
288
  inputs=[],
@@ -291,8 +282,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
291
  toxicity_output, bias_output,
292
  paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
293
  paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
294
- semantic_similarity_output, emotion_shift_output, empathy_score_output,
295
- bleu_score_output, rouge_scores_output, entailment_score_output
296
  ]
297
  ).then(
298
  fn=handle_classification,
@@ -302,8 +292,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
302
  toxicity_output, bias_output,
303
  paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
304
  paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
305
- semantic_similarity_output, emotion_shift_output, empathy_score_output,
306
- bleu_score_output, rouge_scores_output, entailment_score_output
307
  ]
308
  ).then(
309
  fn=lambda prediction, confidence, html: html,
@@ -328,8 +317,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
328
  comment_input, confidence_output, label_display, history_output, toxicity_output, bias_output,
329
  paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
330
  paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
331
- semantic_similarity_output, emotion_shift_output, empathy_score_output,
332
- bleu_score_output, rouge_scores_output, entailment_score_output
333
  ]
334
  )
335
 
 
7
  Reset all UI input and output fields to their default values.
8
  Returns a tuple of empty or default values for all UI components.
9
  """
10
+ return "", 0, "", [], "", "", "", "", 0, "", "", "", "", "", ""
11
 
12
  custom_css = """
13
  /* General Styling */
 
184
  paraphrased_toxicity_output = gr.Textbox(label="Paraphrased Toxicity Score", placeholder="Toxicity score will appear here...")
185
  paraphrased_bias_output = gr.Textbox(label="Paraphrased Bias Score", placeholder="Bias score will appear here...")
186
  semantic_similarity_output = gr.Textbox(label="Semantic Similarity", placeholder="Semantic similarity score will appear here...")
 
187
  empathy_score_output = gr.Textbox(label="Empathy Score", placeholder="Empathy score will appear here...")
188
  bleu_score_output = gr.Textbox(label="BLEU Score", placeholder="BLEU score will appear here...")
189
  rouge_scores_output = gr.Textbox(label="ROUGE Scores", placeholder="ROUGE scores will appear here...")
 
190
 
191
  with gr.Row():
192
  with gr.Column(scale=1):
 
210
  prediction, confidence, color, toxicity_score, bias_score,
211
  paraphrased_comment, paraphrased_prediction, paraphrased_confidence,
212
  paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
213
+ semantic_similarity, empathy_score, bleu_score, rouge_scores
 
214
  ) = classify_toxic_comment(comment)
215
 
216
  history.append({
 
225
  "paraphrased_toxicity_score": paraphrased_toxicity_score,
226
  "paraphrased_bias_score": paraphrased_bias_score,
227
  "semantic_similarity": semantic_similarity,
 
228
  "empathy_score": empathy_score,
229
  "bleu_score": bleu_score,
230
+ "rouge_scores": rouge_scores
 
231
  })
232
 
233
  threshold_message = "High Confidence" if confidence >= 0.7 else "Low Confidence"
 
246
  if paraphrased_prediction else ""
247
  )
248
  semantic_similarity_display = f"{semantic_similarity} (Scale: 0 to 1, higher is better)" if semantic_similarity is not None else "N/A"
 
249
  empathy_score_display = f"{empathy_score} (Scale: 0 to 1, higher indicates more empathy)" if empathy_score is not None else "N/A"
250
  bleu_score_display = f"{bleu_score} (Scale: 0 to 1, higher is better)" if bleu_score is not None else "N/A"
251
  rouge_scores_display = (
252
  f"ROUGE-1: {rouge_scores['rouge1']}, ROUGE-2: {rouge_scores['rouge2']}, ROUGE-L: {rouge_scores['rougeL']}"
253
  if rouge_scores else "N/A"
254
  )
 
255
 
256
  prediction_class = "toxic-indicator" if "Toxic" in prediction else "nontoxic-indicator"
257
  prediction_html = f"<span class='{prediction_class}' style='color: {color}; font-size: 20px; font-weight: bold;'>{prediction}</span>"
 
261
  toxicity_display, bias_display,
262
  paraphrased_comment_display, paraphrased_prediction_display, paraphrased_confidence_display,
263
  paraphrased_toxicity_display, paraphrased_bias_display, paraphrased_label_html,
264
+ semantic_similarity_display, empathy_score_display, bleu_score_display, rouge_scores_display
 
265
  )
266
 
267
  def handle_feedback(feedback, comment):
 
274
  "Paraphrasing... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>", 0,
275
  "Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>", "",
276
  "Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>",
 
277
  "Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>"
278
  ),
279
  inputs=[],
 
282
  toxicity_output, bias_output,
283
  paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
284
  paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
285
+ semantic_similarity_output, empathy_score_output, bleu_score_output, rouge_scores_output
 
286
  ]
287
  ).then(
288
  fn=handle_classification,
 
292
  toxicity_output, bias_output,
293
  paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
294
  paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
295
+ semantic_similarity_output, empathy_score_output, bleu_score_output, rouge_scores_output
 
296
  ]
297
  ).then(
298
  fn=lambda prediction, confidence, html: html,
 
317
  comment_input, confidence_output, label_display, history_output, toxicity_output, bias_output,
318
  paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
319
  paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
320
+ semantic_similarity_output, empathy_score_output, bleu_score_output, rouge_scores_output
 
321
  ]
322
  )
323