Spaces:
Sleeping
Sleeping
Update classifier.py
Browse files- classifier.py +7 -14
classifier.py
CHANGED
@@ -1,17 +1,17 @@
|
|
1 |
# classifier.py
|
2 |
import torch
|
3 |
-
from model_loader import classifier_model
|
4 |
from paraphraser import paraphrase_comment
|
5 |
-
from metrics import compute_semantic_similarity,
|
6 |
|
7 |
def classify_toxic_comment(comment):
|
8 |
"""
|
9 |
Classify a comment as toxic or non-toxic using the fine-tuned XLM-RoBERTa model.
|
10 |
-
If toxic, paraphrase the comment, re-evaluate, and compute
|
11 |
Returns the prediction label, confidence, color, toxicity score, bias score, paraphrased comment (if applicable), and its metrics.
|
12 |
"""
|
13 |
if not comment.strip():
|
14 |
-
return "Error: Please enter a comment.", None, None, None, None, None, None, None, None, None, None, None, None
|
15 |
|
16 |
# Access the model and tokenizer
|
17 |
model = classifier_model.model
|
@@ -39,7 +39,7 @@ def classify_toxic_comment(comment):
|
|
39 |
bias_score = 0.01 if label == "Non-Toxic" else 0.15
|
40 |
bias_score = round(bias_score, 2)
|
41 |
|
42 |
-
# If the comment is toxic, paraphrase it and compute
|
43 |
paraphrased_comment = None
|
44 |
paraphrased_prediction = None
|
45 |
paraphrased_confidence = None
|
@@ -47,13 +47,9 @@ def classify_toxic_comment(comment):
|
|
47 |
paraphrased_toxicity_score = None
|
48 |
paraphrased_bias_score = None
|
49 |
semantic_similarity = None
|
50 |
-
original_emotion = None
|
51 |
-
paraphrased_emotion = None
|
52 |
-
emotion_shift_positive = None
|
53 |
empathy_score = None
|
54 |
bleu_score = None
|
55 |
rouge_scores = None
|
56 |
-
entailment_score = None
|
57 |
|
58 |
if label == "Toxic":
|
59 |
# Paraphrase the comment
|
@@ -74,18 +70,15 @@ def classify_toxic_comment(comment):
|
|
74 |
paraphrased_bias_score = 0.01 if paraphrased_label == "Non-Toxic" else 0.15 # Placeholder
|
75 |
paraphrased_bias_score = round(paraphrased_bias_score, 2)
|
76 |
|
77 |
-
# Compute
|
78 |
semantic_similarity = compute_semantic_similarity(comment, paraphrased_comment)
|
79 |
-
original_emotion, paraphrased_emotion, emotion_shift_positive = compute_emotion_shift(comment, paraphrased_comment)
|
80 |
empathy_score = compute_empathy_score(paraphrased_comment)
|
81 |
bleu_score = compute_bleu_score(comment, paraphrased_comment)
|
82 |
rouge_scores = compute_rouge_score(comment, paraphrased_comment)
|
83 |
-
entailment_score = compute_entailment_score(comment, paraphrased_comment)
|
84 |
|
85 |
return (
|
86 |
f"Prediction: {label}", confidence, label_color, toxicity_score, bias_score,
|
87 |
paraphrased_comment, f"Prediction: {paraphrased_label}" if paraphrased_comment else None,
|
88 |
paraphrased_confidence, paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
|
89 |
-
semantic_similarity,
|
90 |
-
empathy_score, bleu_score, rouge_scores, entailment_score
|
91 |
)
|
|
|
1 |
# classifier.py
|
2 |
import torch
|
3 |
+
from model_loader import classifier_model
|
4 |
from paraphraser import paraphrase_comment
|
5 |
+
from metrics import compute_semantic_similarity, compute_empathy_score, compute_bleu_score, compute_rouge_score
|
6 |
|
7 |
def classify_toxic_comment(comment):
|
8 |
"""
|
9 |
Classify a comment as toxic or non-toxic using the fine-tuned XLM-RoBERTa model.
|
10 |
+
If toxic, paraphrase the comment, re-evaluate, and compute essential metrics.
|
11 |
Returns the prediction label, confidence, color, toxicity score, bias score, paraphrased comment (if applicable), and its metrics.
|
12 |
"""
|
13 |
if not comment.strip():
|
14 |
+
return "Error: Please enter a comment.", None, None, None, None, None, None, None, None, None, None, None, None
|
15 |
|
16 |
# Access the model and tokenizer
|
17 |
model = classifier_model.model
|
|
|
39 |
bias_score = 0.01 if label == "Non-Toxic" else 0.15
|
40 |
bias_score = round(bias_score, 2)
|
41 |
|
42 |
+
# If the comment is toxic, paraphrase it and compute essential metrics
|
43 |
paraphrased_comment = None
|
44 |
paraphrased_prediction = None
|
45 |
paraphrased_confidence = None
|
|
|
47 |
paraphrased_toxicity_score = None
|
48 |
paraphrased_bias_score = None
|
49 |
semantic_similarity = None
|
|
|
|
|
|
|
50 |
empathy_score = None
|
51 |
bleu_score = None
|
52 |
rouge_scores = None
|
|
|
53 |
|
54 |
if label == "Toxic":
|
55 |
# Paraphrase the comment
|
|
|
70 |
paraphrased_bias_score = 0.01 if paraphrased_label == "Non-Toxic" else 0.15 # Placeholder
|
71 |
paraphrased_bias_score = round(paraphrased_bias_score, 2)
|
72 |
|
73 |
+
# Compute essential metrics
|
74 |
semantic_similarity = compute_semantic_similarity(comment, paraphrased_comment)
|
|
|
75 |
empathy_score = compute_empathy_score(paraphrased_comment)
|
76 |
bleu_score = compute_bleu_score(comment, paraphrased_comment)
|
77 |
rouge_scores = compute_rouge_score(comment, paraphrased_comment)
|
|
|
78 |
|
79 |
return (
|
80 |
f"Prediction: {label}", confidence, label_color, toxicity_score, bias_score,
|
81 |
paraphrased_comment, f"Prediction: {paraphrased_label}" if paraphrased_comment else None,
|
82 |
paraphrased_confidence, paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
|
83 |
+
semantic_similarity, empathy_score, bleu_score, rouge_scores
|
|
|
84 |
)
|