Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from classifier import classify_toxic_comment
|
|
4 |
|
5 |
# Clear function for resetting the UI
|
6 |
def clear_inputs():
|
7 |
-
return "", 0, "", [], "", ""
|
8 |
|
9 |
# Custom CSS for styling
|
10 |
custom_css = """
|
@@ -75,6 +75,23 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
75 |
label_display = gr.HTML()
|
76 |
threshold_display = gr.HTML()
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
with gr.Accordion("Prediction History", open=False):
|
79 |
history_output = gr.JSON(label="Previous Predictions")
|
80 |
|
@@ -90,31 +107,75 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
90 |
def handle_classification(comment, history):
|
91 |
if history is None:
|
92 |
history = []
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
history.append({
|
95 |
"comment": comment,
|
96 |
"prediction": prediction,
|
97 |
"confidence": confidence,
|
98 |
"toxicity_score": toxicity_score,
|
99 |
-
"bias_score": bias_score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
})
|
|
|
101 |
threshold_message = "High Confidence" if confidence >= 0.7 else "Low Confidence"
|
102 |
threshold_color = "green" if confidence >= 0.7 else "orange"
|
103 |
toxicity_display = f"{toxicity_score} (Scale: 0 to 1, lower is less toxic)" if toxicity_score is not None else "N/A"
|
104 |
bias_display = f"{bias_score} (Scale: 0 to 1, lower indicates less bias)" if bias_score is not None else "N/A"
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
def handle_feedback(feedback, comment):
|
108 |
return f"Thank you for your feedback: {feedback}\nAdditional comment: {comment}"
|
109 |
|
110 |
submit_btn.click(
|
111 |
-
fn=lambda: ("Classifying...", 0, "", None, "", "", "Calculating...", "Calculating..."), # Show loading state
|
112 |
inputs=[],
|
113 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
).then(
|
115 |
fn=handle_classification,
|
116 |
inputs=[comment_input, history_output],
|
117 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
).then(
|
119 |
fn=lambda prediction, confidence, color: f"<span style='color: {color}; font-size: 20px; font-weight: bold;'>{prediction}</span>",
|
120 |
inputs=[prediction_output, confidence_output, label_display],
|
@@ -134,7 +195,12 @@ with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
|
134 |
clear_btn.click(
|
135 |
fn=clear_inputs,
|
136 |
inputs=[],
|
137 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
138 |
)
|
139 |
|
140 |
gr.Markdown(
|
|
|
4 |
|
5 |
# Clear function for resetting the UI
|
6 |
def clear_inputs():
|
7 |
+
return "", 0, "", [], "", "", "", "", 0, "", "", "", "", ""
|
8 |
|
9 |
# Custom CSS for styling
|
10 |
custom_css = """
|
|
|
75 |
label_display = gr.HTML()
|
76 |
threshold_display = gr.HTML()
|
77 |
|
78 |
+
with gr.Accordion("Paraphrased Output (if Toxic)", open=False):
|
79 |
+
paraphrased_comment_output = gr.Textbox(label="Paraphrased Comment", placeholder="Paraphrased comment will appear here if the input is toxic...")
|
80 |
+
paraphrased_prediction_output = gr.Textbox(label="Paraphrased Prediction", placeholder="Prediction will appear here...")
|
81 |
+
paraphrased_toxicity_output = gr.Textbox(label="Paraphrased Toxicity Score", placeholder="Toxicity score will appear here...")
|
82 |
+
paraphrased_bias_output = gr.Textbox(label="Paraphrased Bias Score", placeholder="Bias score will appear here...")
|
83 |
+
paraphrased_confidence_output = gr.Slider(
|
84 |
+
label="Paraphrased Confidence",
|
85 |
+
minimum=0,
|
86 |
+
maximum=1,
|
87 |
+
value=0,
|
88 |
+
interactive=False
|
89 |
+
)
|
90 |
+
paraphrased_label_display = gr.HTML()
|
91 |
+
semantic_similarity_output = gr.Textbox(label="Semantic Similarity", placeholder="Semantic similarity score will appear here...")
|
92 |
+
emotion_shift_output = gr.Textbox(label="Emotion Shift", placeholder="Emotion shift will appear here...")
|
93 |
+
empathy_score_output = gr.Textbox(label="Empathy Score", placeholder="Empathy score will appear here...")
|
94 |
+
|
95 |
with gr.Accordion("Prediction History", open=False):
|
96 |
history_output = gr.JSON(label="Previous Predictions")
|
97 |
|
|
|
107 |
def handle_classification(comment, history):
|
108 |
if history is None:
|
109 |
history = []
|
110 |
+
(
|
111 |
+
prediction, confidence, color, toxicity_score, bias_score,
|
112 |
+
paraphrased_comment, paraphrased_prediction, paraphrased_confidence,
|
113 |
+
paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
|
114 |
+
semantic_similarity, emotion_shift, empathy_score
|
115 |
+
) = classify_toxic_comment(comment)
|
116 |
+
|
117 |
history.append({
|
118 |
"comment": comment,
|
119 |
"prediction": prediction,
|
120 |
"confidence": confidence,
|
121 |
"toxicity_score": toxicity_score,
|
122 |
+
"bias_score": bias_score,
|
123 |
+
"paraphrased_comment": paraphrased_comment,
|
124 |
+
"paraphrased_prediction": paraphrased_prediction,
|
125 |
+
"paraphrased_confidence": paraphrased_confidence,
|
126 |
+
"paraphrased_toxicity_score": paraphrased_toxicity_score,
|
127 |
+
"paraphrased_bias_score": paraphrased_bias_score,
|
128 |
+
"semantic_similarity": semantic_similarity,
|
129 |
+
"emotion_shift": emotion_shift,
|
130 |
+
"empathy_score": empathy_score
|
131 |
})
|
132 |
+
|
133 |
threshold_message = "High Confidence" if confidence >= 0.7 else "Low Confidence"
|
134 |
threshold_color = "green" if confidence >= 0.7 else "orange"
|
135 |
toxicity_display = f"{toxicity_score} (Scale: 0 to 1, lower is less toxic)" if toxicity_score is not None else "N/A"
|
136 |
bias_display = f"{bias_score} (Scale: 0 to 1, lower indicates less bias)" if bias_score is not None else "N/A"
|
137 |
+
|
138 |
+
paraphrased_comment_display = paraphrased_comment if paraphrased_comment else "N/A (Comment was non-toxic)"
|
139 |
+
paraphrased_prediction_display = paraphrased_prediction if paraphrased_prediction else "N/A"
|
140 |
+
paraphrased_confidence_display = paraphrased_confidence if paraphrased_confidence else 0
|
141 |
+
paraphrased_toxicity_display = f"{paraphrased_toxicity_score} (Scale: 0 to 1, lower is less toxic)" if paraphrased_toxicity_score is not None else "N/A"
|
142 |
+
paraphrased_bias_display = f"{paraphrased_bias_score} (Scale: 0 to 1, lower indicates less bias)" if paraphrased_bias_score is not None else "N/A"
|
143 |
+
paraphrased_label_html = f"<span style='color: {paraphrased_color}; font-size: 20px; font-weight: bold;'>{paraphrased_prediction}</span>" if paraphrased_prediction else ""
|
144 |
+
semantic_similarity_display = f"{semantic_similarity} (Scale: 0 to 1, higher is better)" if semantic_similarity is not None else "N/A"
|
145 |
+
emotion_shift_display = emotion_shift if emotion_shift else "N/A"
|
146 |
+
empathy_score_display = f"{empathy_score} (Scale: 0 to 1, higher indicates more empathy)" if empathy_score is not None else "N/A"
|
147 |
+
|
148 |
+
return (
|
149 |
+
prediction, confidence, color, history, threshold_message, threshold_color,
|
150 |
+
toxicity_display, bias_display,
|
151 |
+
paraphrased_comment_display, paraphrased_prediction_display, paraphrased_confidence_display,
|
152 |
+
paraphrased_toxicity_display, paraphrased_bias_display, paraphrased_label_html,
|
153 |
+
semantic_similarity_display, emotion_shift_display, empathy_score_display
|
154 |
+
)
|
155 |
|
156 |
def handle_feedback(feedback, comment):
|
157 |
return f"Thank you for your feedback: {feedback}\nAdditional comment: {comment}"
|
158 |
|
159 |
submit_btn.click(
|
160 |
+
fn=lambda: ("Classifying...", 0, "", None, "", "", "Calculating...", "Calculating...", "Paraphrasing...", "Calculating...", 0, "Calculating...", "Calculating...", "", "Calculating...", "Calculating...", "Calculating..."), # Show loading state
|
161 |
inputs=[],
|
162 |
+
outputs=[
|
163 |
+
prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display,
|
164 |
+
toxicity_output, bias_output,
|
165 |
+
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
166 |
+
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
167 |
+
semantic_similarity_output, emotion_shift_output, empathy_score_output
|
168 |
+
]
|
169 |
).then(
|
170 |
fn=handle_classification,
|
171 |
inputs=[comment_input, history_output],
|
172 |
+
outputs=[
|
173 |
+
prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display,
|
174 |
+
toxicity_output, bias_output,
|
175 |
+
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
176 |
+
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
177 |
+
semantic_similarity_output, emotion_shift_output, empathy_score_output
|
178 |
+
]
|
179 |
).then(
|
180 |
fn=lambda prediction, confidence, color: f"<span style='color: {color}; font-size: 20px; font-weight: bold;'>{prediction}</span>",
|
181 |
inputs=[prediction_output, confidence_output, label_display],
|
|
|
195 |
clear_btn.click(
|
196 |
fn=clear_inputs,
|
197 |
inputs=[],
|
198 |
+
outputs=[
|
199 |
+
comment_input, confidence_output, label_display, history_output, toxicity_output, bias_output,
|
200 |
+
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
201 |
+
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
202 |
+
semantic_similarity_output, emotion_shift_output, empathy_score_output
|
203 |
+
]
|
204 |
)
|
205 |
|
206 |
gr.Markdown(
|