Spaces:
Sleeping
Sleeping
Update classifier.py
Browse files- classifier.py +17 -4
classifier.py
CHANGED
@@ -2,15 +2,16 @@
|
|
2 |
import torch
|
3 |
from model_loader import classifier_model, classifier_tokenizer
|
4 |
from paraphraser import paraphrase_comment
|
|
|
5 |
|
6 |
def classify_toxic_comment(comment):
|
7 |
"""
|
8 |
Classify a comment as toxic or non-toxic using the fine-tuned XLM-RoBERTa model.
|
9 |
-
If toxic, paraphrase the comment
|
10 |
Returns the prediction label, confidence, color, toxicity score, bias score, paraphrased comment (if applicable), and its metrics.
|
11 |
"""
|
12 |
if not comment.strip():
|
13 |
-
return "Error: Please enter a comment.", None, None, None, None, None, None, None, None, None
|
14 |
|
15 |
# Tokenize the input comment
|
16 |
inputs = classifier_tokenizer(comment, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
@@ -34,13 +35,18 @@ def classify_toxic_comment(comment):
|
|
34 |
bias_score = 0.01 if label == "Non-Toxic" else 0.15
|
35 |
bias_score = round(bias_score, 2)
|
36 |
|
37 |
-
# If the comment is toxic, paraphrase it
|
38 |
paraphrased_comment = None
|
39 |
paraphrased_prediction = None
|
40 |
paraphrased_confidence = None
|
41 |
paraphrased_color = None
|
42 |
paraphrased_toxicity_score = None
|
43 |
paraphrased_bias_score = None
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
if label == "Toxic":
|
46 |
# Paraphrase the comment
|
@@ -61,8 +67,15 @@ def classify_toxic_comment(comment):
|
|
61 |
paraphrased_bias_score = 0.01 if paraphrased_label == "Non-Toxic" else 0.15 # Placeholder
|
62 |
paraphrased_bias_score = round(paraphrased_bias_score, 2)
|
63 |
|
|
|
|
|
|
|
|
|
|
|
64 |
return (
|
65 |
f"Prediction: {label}", confidence, label_color, toxicity_score, bias_score,
|
66 |
paraphrased_comment, f"Prediction: {paraphrased_label}" if paraphrased_comment else None,
|
67 |
-
paraphrased_confidence, paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score
|
|
|
|
|
68 |
)
|
|
|
2 |
import torch
|
3 |
from model_loader import classifier_model, classifier_tokenizer
|
4 |
from paraphraser import paraphrase_comment
|
5 |
+
from metrics import compute_semantic_similarity, compute_emotion_shift, compute_empathy_score
|
6 |
|
7 |
def classify_toxic_comment(comment):
|
8 |
"""
|
9 |
Classify a comment as toxic or non-toxic using the fine-tuned XLM-RoBERTa model.
|
10 |
+
If toxic, paraphrase the comment, re-evaluate, and compute additional Stage 3 metrics.
|
11 |
Returns the prediction label, confidence, color, toxicity score, bias score, paraphrased comment (if applicable), and its metrics.
|
12 |
"""
|
13 |
if not comment.strip():
|
14 |
+
return "Error: Please enter a comment.", None, None, None, None, None, None, None, None, None, None, None, None, None
|
15 |
|
16 |
# Tokenize the input comment
|
17 |
inputs = classifier_tokenizer(comment, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
|
|
35 |
bias_score = 0.01 if label == "Non-Toxic" else 0.15
|
36 |
bias_score = round(bias_score, 2)
|
37 |
|
38 |
+
# If the comment is toxic, paraphrase it and compute additional metrics
|
39 |
paraphrased_comment = None
|
40 |
paraphrased_prediction = None
|
41 |
paraphrased_confidence = None
|
42 |
paraphrased_color = None
|
43 |
paraphrased_toxicity_score = None
|
44 |
paraphrased_bias_score = None
|
45 |
+
semantic_similarity = None
|
46 |
+
original_emotion = None
|
47 |
+
paraphrased_emotion = None
|
48 |
+
emotion_shift_positive = None
|
49 |
+
empathy_score = None
|
50 |
|
51 |
if label == "Toxic":
|
52 |
# Paraphrase the comment
|
|
|
67 |
paraphrased_bias_score = 0.01 if paraphrased_label == "Non-Toxic" else 0.15 # Placeholder
|
68 |
paraphrased_bias_score = round(paraphrased_bias_score, 2)
|
69 |
|
70 |
+
# Compute additional Stage 3 metrics
|
71 |
+
semantic_similarity = compute_semantic_similarity(comment, paraphrased_comment)
|
72 |
+
original_emotion, paraphrased_emotion, emotion_shift_positive = compute_emotion_shift(comment, paraphrased_comment)
|
73 |
+
empathy_score = compute_empathy_score(paraphrased_comment)
|
74 |
+
|
75 |
return (
|
76 |
f"Prediction: {label}", confidence, label_color, toxicity_score, bias_score,
|
77 |
paraphrased_comment, f"Prediction: {paraphrased_label}" if paraphrased_comment else None,
|
78 |
+
paraphrased_confidence, paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
|
79 |
+
semantic_similarity, f"Original: {original_emotion}, Paraphrased: {paraphrased_emotion}, Positive Shift: {emotion_shift_positive}" if original_emotion else None,
|
80 |
+
empathy_score
|
81 |
)
|