Spaces:
Sleeping
Sleeping
# model_loader.py | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
from transformers import AutoModelForCausalLM | |
def load_classifier_model_and_tokenizer(): | |
""" | |
Load the fine-tuned XLM-RoBERTa model and tokenizer for toxic comment classification. | |
Returns the model and tokenizer. | |
""" | |
try: | |
model_name = "JanviMl/xlm-roberta-toxic-classifier-capstone" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) | |
return model, tokenizer | |
except Exception as e: | |
raise Exception(f"Error loading classifier model or tokenizer: {str(e)}") | |
def load_paraphrase_model_and_tokenizer(): | |
""" | |
Load the Granite 3.2-2B-Instruct model and tokenizer for paraphrasing. | |
Returns the model and tokenizer. | |
""" | |
try: | |
model_name = "ibm-granite/granite-3.2-2b-instruct" | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
return model, tokenizer | |
except Exception as e: | |
raise Exception(f"Error loading paraphrase model or tokenizer: {str(e)}") | |
# Load both models and tokenizers at startup | |
classifier_model, classifier_tokenizer = load_classifier_model_and_tokenizer() | |
paraphrase_model, paraphrase_tokenizer = load_paraphrase_model_and_tokenizer() |