|
|
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
from transformers import AutoModelForCausalLM |
|
|
|
def load_classifier_model_and_tokenizer(): |
|
""" |
|
Load the fine-tuned XLM-RoBERTa model and tokenizer for toxic comment classification. |
|
Returns the model and tokenizer. |
|
""" |
|
try: |
|
model_name = "JanviMl/xlm-roberta-toxic-classifier-capstone" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) |
|
return model, tokenizer |
|
except Exception as e: |
|
raise Exception(f"Error loading classifier model or tokenizer: {str(e)}") |
|
|
|
def load_paraphrase_model_and_tokenizer(): |
|
""" |
|
Load the Granite 3.2-2B-Instruct model and tokenizer for paraphrasing. |
|
Returns the model and tokenizer. |
|
""" |
|
try: |
|
model_name = "ibm-granite/granite-3.2-2b-instruct" |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
return model, tokenizer |
|
except Exception as e: |
|
raise Exception(f"Error loading paraphrase model or tokenizer: {str(e)}") |
|
|
|
|
|
classifier_model, classifier_tokenizer = load_classifier_model_and_tokenizer() |
|
paraphrase_model, paraphrase_tokenizer = load_paraphrase_model_and_tokenizer() |