Spaces:
Sleeping
Sleeping
File size: 26,152 Bytes
cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 01be767 cd3d1c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
import argparse
import base64
import logging
import os
import sys
import threading
from collections import Counter
from io import BytesIO
from typing import Dict, List, Optional, Tuple, Union
import gradio as gr
import pandas as pd
import requests
import torch
import uvicorn
from fastapi import FastAPI, File, Form, HTTPException, UploadFile
from fastapi.responses import JSONResponse
from PIL import Image, ImageDraw, ImageStat
from transformers import (
DetrForObjectDetection,
DetrForSegmentation,
DetrImageProcessor,
YolosForObjectDetection,
YolosImageProcessor,
)
import nest_asyncio
# ------------------------------
# Configuration
# ------------------------------
# Configure logging for debugging and monitoring
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Define constants for model and server configuration
CONFIDENCE_THRESHOLD: float = 0.5 # Default threshold for object detection confidence
VALID_MODELS: List[str] = [
"facebook/detr-resnet-50",
"facebook/detr-resnet-101",
"facebook/detr-resnet-50-panoptic",
"facebook/detr-resnet-101-panoptic",
"hustvl/yolos-tiny",
"hustvl/yolos-base",
]
MODEL_DESCRIPTIONS: Dict[str, str] = {
"facebook/detr-resnet-50": "DETR with ResNet-50 for object detection. Fast and accurate.",
"facebook/detr-resnet-101": "DETR with ResNet-101 for object detection. More accurate, slower.",
"facebook/detr-resnet-50-panoptic": "DETR with ResNet-50 for panoptic segmentation.",
"facebook/detr-resnet-101-panoptic": "DETR with ResNet-101 for panoptic segmentation.",
"hustvl/yolos-tiny": "YOLOS Tiny. Lightweight and fast.",
"hustvl/yolos-base": "YOLOS Base. Balances speed and accuracy."
}
DEFAULT_GRADIO_PORT: int = 7860 # Default port for Gradio UI
DEFAULT_FASTAPI_PORT: int = 8000 # Default port for FastAPI server
PORT_RANGE: range = range(7860, 7870) # Range of ports to try for Gradio
MAX_PORT_ATTEMPTS: int = 10 # Maximum attempts to find an available port
# Thread-safe storage for lazy-loaded models and processors
models: Dict[str, any] = {}
processors: Dict[str, any] = {}
model_lock = threading.Lock()
# ------------------------------
# Image Processing
# ------------------------------
def process_image(
image: Optional[Image.Image],
url: Optional[str],
model_name: str,
for_json: bool = False,
confidence_threshold: float = CONFIDENCE_THRESHOLD
) -> Union[Dict, Tuple[Optional[Image.Image], Optional[pd.DataFrame], Optional[pd.DataFrame], Optional[pd.DataFrame], str]]:
"""
Process an image for object detection or panoptic segmentation, handling Gradio and FastAPI inputs.
Args:
image: PIL Image object from file upload (optional).
url: URL of the image to process (optional).
model_name: Name of the model to use (must be in VALID_MODELS).
for_json: If True, return JSON dict for API/JSON tab; else, return tuple for Gradio Home tab.
confidence_threshold: Minimum confidence score for detection (default: 0.5).
Returns:
For JSON: Dict with base64-encoded image, detected objects, and confidence scores.
For Gradio: Tuple of (annotated image, objects DataFrame, unique objects DataFrame, properties DataFrame, error message).
"""
try:
# Validate input: ensure exactly one of image or URL is provided
if image is None and not url:
return {"error": "Please provide an image or URL"} if for_json else (None, None, None, None, "Please provide an image or URL")
if image and url:
return {"error": "Provide either an image or URL, not both"} if for_json else (None, None, None, None, "Provide either an image or URL, not both")
if model_name not in VALID_MODELS:
error_msg = f"Invalid model: {model_name}. Choose from: {VALID_MODELS}"
return {"error": error_msg} if for_json else (None, None, None, None, error_msg)
# Calculate margin threshold: (1 - confidence_threshold) / 2 + confidence_threshold
margin_threshold = (1 - confidence_threshold) / 2 + confidence_threshold
# Load image from URL if provided
if url:
response = requests.get(url, timeout=10)
response.raise_for_status()
image = Image.open(BytesIO(response.content)).convert("RGB")
# Load model and processor thread-safely
with model_lock:
if model_name not in models:
logger.info(f"Loading model: {model_name}")
try:
# Select appropriate model and processor based on model name
if "yolos" in model_name:
models[model_name] = YolosForObjectDetection.from_pretrained(model_name)
processors[model_name] = YolosImageProcessor.from_pretrained(model_name)
elif "panoptic" in model_name:
models[model_name] = DetrForSegmentation.from_pretrained(model_name)
processors[model_name] = DetrImageProcessor.from_pretrained(model_name)
else:
models[model_name] = DetrForObjectDetection.from_pretrained(model_name)
processors[model_name] = DetrImageProcessor.from_pretrained(model_name)
except Exception as e:
error_msg = f"Failed to load model: {str(e)}"
logger.error(error_msg)
return {"error": error_msg} if for_json else (None, None, None, None, error_msg)
model, processor = models[model_name], processors[model_name]
# Prepare image for model processing
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Initialize drawing context for annotations
draw = ImageDraw.Draw(image)
object_names: List[str] = []
confidence_scores: List[float] = []
object_counter = Counter()
target_sizes = torch.tensor([image.size[::-1]])
# Process results based on model type (panoptic or object detection)
if "panoptic" in model_name:
# Handle panoptic segmentation
processed_sizes = torch.tensor([[inputs["pixel_values"].shape[2], inputs["pixel_values"].shape[3]]])
results = processor.post_process_panoptic(outputs, target_sizes=target_sizes, processed_sizes=processed_sizes)[0]
for segment in results["segments_info"]:
label = segment["label_id"]
label_name = model.config.id2label.get(label, "Unknown")
score = segment.get("score", 1.0)
# Apply segmentation mask if available
if "masks" in results and segment["id"] < len(results["masks"]):
mask = results["masks"][segment["id"]].cpu().numpy()
if mask.shape[0] > 0 and mask.shape[1] > 0:
mask_image = Image.fromarray((mask * 255).astype("uint8"))
colored_mask = Image.new("RGBA", image.size, (0, 0, 0, 0))
mask_draw = ImageDraw.Draw(colored_mask)
r, g, b = (segment["id"] * 50) % 255, (segment["id"] * 100) % 255, (segment["id"] * 150) % 255
mask_draw.bitmap((0, 0), mask_image, fill=(r, g, b, 128))
image = Image.alpha_composite(image.convert("RGBA"), colored_mask).convert("RGB")
draw = ImageDraw.Draw(image)
if score > confidence_threshold:
object_names.append(label_name)
confidence_scores.append(float(score))
object_counter[label_name] = float(score)
else:
# Handle object detection
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
if score > confidence_threshold:
x, y, x2, y2 = box.tolist()
label_name = model.config.id2label.get(label.item(), "Unknown")
text = f"{label_name}: {score:.2f}"
text_bbox = draw.textbbox((0, 0), text)
text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
# Use yellow for confidence_threshold <= score < margin_threshold, green for >= margin_threshold
color = "#FFFF00" if score < margin_threshold else "#32CD32"
draw.rectangle([x, y, x2, y2], outline=color, width=2)
draw.text((x2 - text_width - 2, y - text_height - 2), text, fill=color)
object_names.append(label_name)
confidence_scores.append(float(score))
object_counter[label_name] = float(score)
# Compile unique objects and their highest confidence scores
unique_objects = list(object_counter.keys())
unique_confidences = [object_counter[obj] for obj in unique_objects]
# Calculate image properties (metadata)
properties: Dict[str, str] = {
"Format": image.format if hasattr(image, "format") and image.format else "Unknown",
"Size": f"{image.width}x{image.height}",
"Width": f"{image.width} px",
"Height": f"{image.height} px",
"Mode": image.mode,
"Aspect Ratio": f"{round(image.width / image.height, 2)}" if image.height != 0 else "Undefined",
"File Size": "Unknown",
"Mean (R,G,B)": "Unknown",
"StdDev (R,G,B)": "Unknown",
}
try:
# Compute file size
buffered = BytesIO()
image.save(buffered, format="PNG")
properties["File Size"] = f"{len(buffered.getvalue()) / 1024:.2f} KB"
# Compute color statistics
stat = ImageStat.Stat(image)
properties["Mean (R,G,B)"] = ", ".join(f"{m:.2f}" for m in stat.mean)
properties["StdDev (R,G,B)"] = ", ".join(f"{s:.2f}" for s in stat.stddev)
except Exception as e:
logger.error(f"Error calculating image stats: {str(e)}")
# Prepare output based on request type
if for_json:
# Return JSON with base64-encoded image
buffered = BytesIO()
image.save(buffered, format="PNG")
img_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {
"image_url": f"data:image/png;base64,{img_base64}",
"detected_objects": object_names,
"confidence_scores": confidence_scores,
"unique_objects": unique_objects,
"unique_confidence_scores": unique_confidences,
}
else:
# Return tuple for Gradio Home tab with DataFrames
objects_df = (
pd.DataFrame({"Object": object_names, "Confidence Score": [f"{score:.2f}" for score in confidence_scores]})
if object_names else pd.DataFrame(columns=["Object", "Confidence Score"])
)
unique_objects_df = (
pd.DataFrame({"Unique Object": unique_objects, "Confidence Score": [f"{score:.2f}" for score in unique_confidences]})
if unique_objects else pd.DataFrame(columns=["Unique Object", "Confidence Score"])
)
properties_df = pd.DataFrame([properties]) if properties else pd.DataFrame(columns=properties.keys())
return image, objects_df, unique_objects_df, properties_df, ""
except requests.RequestException as e:
# Handle URL fetch errors
error_msg = f"Error fetching image from URL: {str(e)}"
logger.error(f"{error_msg}\n{traceback.format_exc()}")
return {"error": error_msg} if for_json else (None, None, None, None, error_msg)
except Exception as e:
# Handle general processing errors
error_msg = f"Error processing image: {str(e)}"
logger.error(f"{error_msg}\n{traceback.format_exc()}")
return {"error": error_msg} if for_json else (None, None, None, None, error_msg)
# ------------------------------
# FastAPI Setup
# ------------------------------
app = FastAPI(title="Object Detection API")
@app.post("/detect")
async def detect_objects_endpoint(
file: Optional[UploadFile] = File(None),
image_url: Optional[str] = Form(None),
model_name: str = Form(VALID_MODELS[0]),
confidence_threshold: float = Form(CONFIDENCE_THRESHOLD),
) -> JSONResponse:
"""
FastAPI endpoint to detect objects in an image from file upload or URL.
Args:
file: Uploaded image file (optional).
image_url: URL of the image (optional).
model_name: Model to use for detection (default: first VALID_MODELS entry).
confidence_threshold: Confidence threshold for detection (default: 0.5).
Returns:
JSONResponse with base64-encoded image, detected objects, and confidence scores.
Raises:
HTTPException: For invalid inputs or processing errors.
"""
try:
# Validate input: ensure exactly one of file or URL
if (file is None and not image_url) or (file is not None and image_url):
raise HTTPException(status_code=400, detail="Provide either an image file or an image URL, not both.")
# Validate confidence threshold
if not 0 <= confidence_threshold <= 1:
raise HTTPException(status_code=400, detail="Confidence threshold must be between 0 and 1.")
# Load image from file if provided
image = None
if file:
if not file.content_type.startswith("image/"):
raise HTTPException(status_code=400, detail="File must be an image")
contents = await file.read()
image = Image.open(BytesIO(contents)).convert("RGB")
# Process image with specified parameters
result = process_image(image, image_url, model_name, for_json=True, confidence_threshold=confidence_threshold)
if "error" in result:
raise HTTPException(status_code=400, detail=result["error"])
return JSONResponse(content=result)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in FastAPI endpoint: {str(e)}\n{traceback.format_exc()}")
raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
# ------------------------------
# Gradio UI Setup
# ------------------------------
def create_gradio_ui() -> gr.Blocks:
"""
Create and configure the Gradio UI for object detection with Home, JSON, and Help tabs.
Returns:
Gradio Blocks object representing the UI.
Raises:
RuntimeError: If UI creation fails.
"""
try:
# Initialize Gradio Blocks with a custom theme
with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="gray")) as demo:
# Display app header
gr.Markdown(
f"""
# π Object Detection App
Upload an image or provide a URL to detect objects using transformer models (DETR, YOLOS).
Running on port: {os.getenv('GRADIO_SERVER_PORT', 'auto-selected')}
"""
)
# Create tabbed interface
with gr.Tabs():
# Home tab (formerly Image Upload)
with gr.Tab("π Home"):
with gr.Row():
# Left column for inputs
with gr.Column(scale=1):
gr.Markdown("### Input")
# Model selection dropdown
model_choice = gr.Dropdown(choices=VALID_MODELS, value=VALID_MODELS[0], label="π Select Model")
model_info = gr.Markdown(f"**Model Info**: {MODEL_DESCRIPTIONS[VALID_MODELS[0]]}")
# Image upload input
image_input = gr.Image(type="pil", label="π· Upload Image")
# Image URL input
image_url_input = gr.Textbox(label="π Image URL", placeholder="https://example.com/image.jpg")
# Buttons for submission and clearing
with gr.Row():
submit_btn = gr.Button("β¨ Detect", variant="primary")
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
# Update model info when model changes
model_choice.change(
fn=lambda model_name: f"**Model Info**: {MODEL_DESCRIPTIONS.get(model_name, 'No description available.')}",
inputs=model_choice,
outputs=model_info,
)
# Right column for results
with gr.Column(scale=2):
gr.Markdown("### Results")
# Error display (hidden by default)
error_output = gr.Textbox(label="β οΈ Errors", visible=False, lines=3, max_lines=5)
# Annotated image output
output_image = gr.Image(type="pil", label="π― Detected Image", interactive=False)
# Detected and unique objects tables
with gr.Row():
objects_output = gr.DataFrame(label="π Detected Objects", interactive=False)
unique_objects_output = gr.DataFrame(label="π Unique Objects", interactive=False)
# Image properties table
properties_output = gr.DataFrame(label="π Image Properties", interactive=False)
# Process image when Detect button is clicked
submit_btn.click(
fn=process_image,
inputs=[image_input, image_url_input, model_choice],
outputs=[output_image, objects_output, unique_objects_output, properties_output, error_output],
)
# Clear all inputs and outputs
clear_btn.click(
fn=lambda: [None, "", None, None, None, None],
inputs=None,
outputs=[image_input, image_url_input, output_image, objects_output, unique_objects_output, properties_output, error_output],
)
# JSON tab for API-like output
with gr.Tab("π JSON"):
with gr.Row():
# Left column for inputs
with gr.Column(scale=1):
gr.Markdown("### Process Image for JSON")
# Model selection dropdown
url_model_choice = gr.Dropdown(choices=VALID_MODELS, value=VALID_MODELS[0], label="π Select Model")
url_model_info = gr.Markdown(f"**Model Info**: {MODEL_DESCRIPTIONS[VALID_MODELS[0]]}")
# Image upload input
image_input_json = gr.Image(type="pil", label="π· Upload Image")
# Image URL input
image_url_input_json = gr.Textbox(label="π Image URL", placeholder="https://example.com/image.jpg")
# Process button
url_submit_btn = gr.Button("π Process", variant="primary")
# Update model info when model changes
url_model_choice.change(
fn=lambda model_name: f"**Model Info**: {MODEL_DESCRIPTIONS.get(model_name, 'No description available.')}",
inputs=url_model_choice,
outputs=url_model_info,
)
# Right column for JSON output
with gr.Column(scale=1):
# JSON output display
url_output = gr.JSON(label="API Response")
# Process image and return JSON when Process button is clicked
url_submit_btn.click(
fn=lambda img, url, model: process_image(img, url, model, for_json=True),
inputs=[image_input_json, image_url_input_json, url_model_choice],
outputs=[url_output],
)
# Help tab with usage instructions
with gr.Tab("βΉοΈ Help"):
gr.Markdown(
"""
## How to Use
- **Home**: Select a model, upload an image or provide a URL, click "Detect" to see results.
- **JSON**: Select a model, upload an image or enter a URL, click "Process" for JSON output.
- **Models**: Choose DETR (detection or panoptic) or YOLOS (lightweight detection).
- **Clear**: Reset inputs/outputs in Home tab.
- **Errors**: Check error box (Home) or JSON response (JSON) for issues.
## Tips
- Use high-quality images for better results.
- Panoptic models provide segmentation masks for complex scenes.
- YOLOS-Tiny is faster for resource-constrained devices.
"""
)
return demo
except Exception as e:
logger.error(f"Error creating Gradio UI: {str(e)}\n{traceback.format_exc()}")
raise RuntimeError(f"Failed to create Gradio UI: {str(e)}")
# ------------------------------
# Launcher
# ------------------------------
def parse_args() -> argparse.Namespace:
"""
Parse command-line arguments for configuring the application.
Returns:
Parsed arguments as a Namespace object.
"""
parser = argparse.ArgumentParser(description="Object Detection App with Gradio and FastAPI.")
# Gradio port argument
parser.add_argument("--gradio-port", type=int, default=DEFAULT_GRADIO_PORT, help=f"Gradio port (default: {DEFAULT_GRADIO_PORT}).")
# FastAPI enable flag
parser.add_argument("--enable-fastapi", action="store_true", help="Enable FastAPI server.")
# FastAPI port argument
parser.add_argument("--fastapi-port", type=int, default=DEFAULT_FASTAPI_PORT, help=f"FastAPI port (default: {DEFAULT_FASTAPI_PORT}).")
# Confidence threshold argument
parser.add_argument("--confidence-threshold", type=float, default=CONFIDENCE_THRESHOLD, help="Confidence threshold for detection (default: 0.5).")
# Parse known arguments, ignoring unrecognized ones
args, _ = parser.parse_known_args()
# Validate confidence threshold
if not 0 <= args.confidence_threshold <= 1:
parser.error("Confidence threshold must be between 0 and 1.")
return args
def find_available_port(start_port: int, port_range: range, max_attempts: int) -> Optional[int]:
"""
Find an available port within the specified range.
Args:
start_port: Initial port to try.
port_range: Range of ports to attempt.
max_attempts: Maximum number of ports to try.
Returns:
Available port number, or None if no port is found.
"""
import socket
# Check environment variable for port override
port = int(os.getenv("GRADIO_SERVER_PORT", start_port))
attempts = 0
while attempts < max_attempts:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
try:
# Attempt to bind to the port
s.bind(("0.0.0.0", port))
logger.debug(f"Port {port} is available")
return port
except OSError as e:
if e.errno == 98: # Port in use
logger.debug(f"Port {port} is in use")
port = port + 1 if port < max(port_range) else min(port_range)
attempts += 1
else:
raise
logger.error(f"No available port in range {min(port_range)}-{max(port_range)}")
return None
def main() -> None:
"""
Launch the Gradio UI and optional FastAPI server.
Raises:
SystemExit: On interruption or critical errors.
"""
try:
# Apply nest_asyncio for compatibility with Jupyter/Colab
nest_asyncio.apply()
# Parse command-line arguments
args = parse_args()
logger.info(f"Parsed arguments: {args}")
# Find available port for Gradio
gradio_port = find_available_port(args.gradio_port, PORT_RANGE, MAX_PORT_ATTEMPTS)
if gradio_port is None:
logger.error("Failed to find an available port for Gradio UI")
sys.exit(1)
# Start FastAPI server in a thread if enabled
if args.enable_fastapi:
logger.info(f"Starting FastAPI on port {args.fastapi_port}")
fastapi_thread = threading.Thread(
target=lambda: uvicorn.run(app, host="0.0.0.0", port=args.fastapi_port),
daemon=True
)
fastapi_thread.start()
# Launch Gradio UI
logger.info(f"Starting Gradio UI on port {gradio_port}")
demo = create_gradio_ui()
demo.launch(server_port=gradio_port, server_name="0.0.0.0")
except KeyboardInterrupt:
logger.info("Application terminated by user.")
sys.exit(0)
except Exception as e:
logger.error(f"Error: {str(e)}\n{traceback.format_exc()}")
sys.exit(1)
if __name__ == "__main__":
main() |