JaishnaCodz commited on
Commit
01be767
·
1 Parent(s): 7f0bc7a

Sync from GitHub

Browse files
.github/workflows/docker-build-push.yml ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Build and Push Docker Image to Docker Hub
2
+
3
+ on:
4
+ push:
5
+ branches:
6
+ - main
7
+
8
+ jobs:
9
+ build-and-push:
10
+ runs-on: ubuntu-latest
11
+ steps:
12
+ - name: Checkout code
13
+ uses: actions/checkout@v4
14
+
15
+ - name: Log in to Docker Hub
16
+ uses: docker/login-action@v3
17
+ with:
18
+ username: ${{ secrets.DOCKER_USERNAME }}
19
+ password: ${{ secrets.DOCKER_PAT }}
20
+
21
+ - name: Build and push Docker image
22
+ uses: docker/build-push-action@v6
23
+ with:
24
+ context: .
25
+ push: true
26
+ tags: ${{ secrets.DOCKER_USERNAME }}/objectdetection:latest
.github/workflows/hf-space-sync.yml ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Sync to Hugging Face Space
2
+
3
+ on:
4
+ push:
5
+ branches: [ main ]
6
+
7
+ jobs:
8
+ deploy-to-hf-space:
9
+ runs-on: ubuntu-latest
10
+
11
+ steps:
12
+ - name: Checkout Repository
13
+ uses: actions/checkout@v3
14
+
15
+ - name: Install Git
16
+ run: sudo apt-get install git
17
+
18
+ - name: Push to Hugging Face Space
19
+ env:
20
+ HF_TOKEN: ${{ secrets.HF_TOKEN }}
21
+ run: |
22
+ git config --global user.email "[email protected]"
23
+ git config --global user.name "JaishnaCodz"
24
+
25
+ git clone https://JaishnaCodz:[email protected]/spaces/JaishnaCodz/ObjectDetection hf_space
26
+ rsync -av --exclude='.git' ./ hf_space/
27
+ cd hf_space
28
+ git add .
29
+ git commit -m "Sync from GitHub"
30
+ git push
Dockerfile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.11-slim
2
+
3
+ WORKDIR /app
4
+
5
+ COPY requirements.txt .
6
+
7
+ RUN pip install --no-cache-dir -r requirements.txt
8
+
9
+ COPY app.py .
10
+
11
+ EXPOSE 5000
12
+
13
+ CMD ["python", "app.py"]
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2025 Jaishna S
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
app.py ADDED
@@ -0,0 +1,384 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import DetrImageProcessor, DetrForObjectDetection
4
+ from transformers import YolosImageProcessor, YolosForObjectDetection
5
+ from transformers import DetrForSegmentation
6
+ from PIL import Image, ImageDraw, ImageStat
7
+ import requests
8
+ from io import BytesIO
9
+ import base64
10
+ from collections import Counter
11
+ import logging
12
+ from fastapi import FastAPI, File, UploadFile, HTTPException, Form
13
+ from fastapi.responses import JSONResponse
14
+ import uvicorn
15
+ import pandas as pd
16
+ import traceback
17
+ import os
18
+
19
+ # Set up logging
20
+ logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
21
+ logger = logging.getLogger(__name__)
22
+
23
+ # Constants
24
+ CONFIDENCE_THRESHOLD = 0.5
25
+ VALID_MODELS = [
26
+ "facebook/detr-resnet-50",
27
+ "facebook/detr-resnet-101",
28
+ "facebook/detr-resnet-50-panoptic",
29
+ "facebook/detr-resnet-101-panoptic",
30
+ "hustvl/yolos-tiny",
31
+ "hustvl/yolos-base"
32
+ ]
33
+ MODEL_DESCRIPTIONS = {
34
+ "facebook/detr-resnet-50": "DETR with ResNet-50 backbone for object detection. Fast and accurate for general use.",
35
+ "facebook/detr-resnet-101": "DETR with ResNet-101 backbone for object detection. More accurate but slower than ResNet-50.",
36
+ "facebook/detr-resnet-50-panoptic": "DETR with ResNet-50 for panoptic segmentation. Detects objects and segments scenes.",
37
+ "facebook/detr-resnet-101-panoptic": "DETR with ResNet-101 for panoptic segmentation. High accuracy for complex scenes.",
38
+ "hustvl/yolos-tiny": "YOLOS Tiny model. Lightweight and fast, ideal for resource-constrained environments.",
39
+ "hustvl/yolos-base": "YOLOS Base model. Balances speed and accuracy for object detection."
40
+ }
41
+
42
+ # Lazy model loading
43
+ models = {}
44
+ processors = {}
45
+
46
+ def process(image, model_name):
47
+ """Process an image and return detected image, objects, confidences, unique objects, unique confidences, and properties."""
48
+ try:
49
+ if model_name not in VALID_MODELS:
50
+ raise ValueError(f"Invalid model: {model_name}. Choose from: {VALID_MODELS}")
51
+
52
+ # Load model and processor
53
+ if model_name not in models:
54
+ logger.info(f"Loading model: {model_name}")
55
+ if "yolos" in model_name:
56
+ models[model_name] = YolosForObjectDetection.from_pretrained(model_name)
57
+ processors[model_name] = YolosImageProcessor.from_pretrained(model_name)
58
+ elif "panoptic" in model_name:
59
+ models[model_name] = DetrForSegmentation.from_pretrained(model_name)
60
+ processors[model_name] = DetrImageProcessor.from_pretrained(model_name)
61
+ else:
62
+ models[model_name] = DetrForObjectDetection.from_pretrained(model_name)
63
+ processors[model_name] = DetrImageProcessor.from_pretrained(model_name)
64
+
65
+ model, processor = models[model_name], processors[model_name]
66
+ inputs = processor(images=image, return_tensors="pt")
67
+
68
+ with torch.no_grad():
69
+ outputs = model(**inputs)
70
+
71
+ target_sizes = torch.tensor([image.size[::-1]])
72
+ draw = ImageDraw.Draw(image)
73
+ object_names = []
74
+ confidence_scores = []
75
+ object_counter = Counter()
76
+
77
+ if "panoptic" in model_name:
78
+ processed_sizes = torch.tensor([[inputs["pixel_values"].shape[2], inputs["pixel_values"].shape[3]]])
79
+ results = processor.post_process_panoptic(outputs, target_sizes=target_sizes, processed_sizes=processed_sizes)[0]
80
+
81
+ for segment in results["segments_info"]:
82
+ label = segment["label_id"]
83
+ label_name = model.config.id2label.get(label, "Unknown")
84
+ score = segment.get("score", 1.0)
85
+
86
+ if "masks" in results and segment["id"] < len(results["masks"]):
87
+ mask = results["masks"][segment["id"]].cpu().numpy()
88
+ if mask.shape[0] > 0 and mask.shape[1] > 0:
89
+ mask_image = Image.fromarray((mask * 255).astype("uint8"))
90
+ colored_mask = Image.new("RGBA", image.size, (0, 0, 0, 0))
91
+ mask_draw = ImageDraw.Draw(colored_mask)
92
+ r, g, b = (segment["id"] * 50) % 255, (segment["id"] * 100) % 255, (segment["id"] * 150) % 255
93
+ mask_draw.bitmap((0, 0), mask_image, fill=(r, g, b, 128))
94
+ image = Image.alpha_composite(image.convert("RGBA"), colored_mask).convert("RGB")
95
+ draw = ImageDraw.Draw(image)
96
+
97
+ if score > CONFIDENCE_THRESHOLD:
98
+ object_names.append(label_name)
99
+ confidence_scores.append(float(score))
100
+ object_counter[label_name] = float(score)
101
+ else:
102
+ results = processor.post_process_object_detection(outputs, target_sizes=target_sizes)[0]
103
+
104
+ for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
105
+ if score > CONFIDENCE_THRESHOLD:
106
+ x, y, x2, y2 = box.tolist()
107
+ draw.rectangle([x, y, x2, y2], outline="#32CD32", width=2)
108
+ label_name = model.config.id2label.get(label.item(), "Unknown")
109
+ # Place text at top-right corner, outside the box, with smaller size
110
+ text = f"{label_name}: {score:.2f}"
111
+ text_bbox = draw.textbbox((0, 0), text)
112
+ text_width, text_height = text_bbox[2] - text_bbox[0], text_bbox[3] - text_bbox[1]
113
+ draw.text((x2 - text_width - 2, y - text_height - 2), text, fill="#32CD32")
114
+ object_names.append(label_name)
115
+ confidence_scores.append(float(score))
116
+ object_counter[label_name] = float(score)
117
+
118
+ unique_objects = list(object_counter.keys())
119
+ unique_confidences = [object_counter[obj] for obj in unique_objects]
120
+
121
+ # Image properties
122
+ file_size = "Unknown"
123
+ if hasattr(image, "fp") and image.fp is not None:
124
+ buffered = BytesIO()
125
+ image.save(buffered, format="PNG")
126
+ file_size = f"{len(buffered.getvalue()) / 1024:.2f} KB"
127
+
128
+ # Color statistics
129
+ try:
130
+ stat = ImageStat.Stat(image)
131
+ color_stats = {
132
+ "mean": [f"{m:.2f}" for m in stat.mean],
133
+ "stddev": [f"{s:.2f}" for s in stat.stddev]
134
+ }
135
+ except Exception as e:
136
+ logger.error(f"Error calculating color statistics: {str(e)}")
137
+ color_stats = {"mean": "Error", "stddev": "Error"}
138
+
139
+ properties = {
140
+ "Format": image.format if hasattr(image, "format") and image.format else "Unknown",
141
+ "Size": f"{image.width}x{image.height}",
142
+ "Width": f"{image.width} px",
143
+ "Height": f"{image.height} px",
144
+ "Mode": image.mode,
145
+ "Aspect Ratio": f"{round(image.width / image.height, 2) if image.height != 0 else 'Undefined'}",
146
+ "File Size": file_size,
147
+ "Mean (R,G,B)": ", ".join(color_stats["mean"]) if isinstance(color_stats["mean"], list) else color_stats["mean"],
148
+ "StdDev (R,G,B)": ", ".join(color_stats["stddev"]) if isinstance(color_stats["stddev"], list) else color_stats["stddev"]
149
+ }
150
+
151
+ return image, object_names, confidence_scores, unique_objects, unique_confidences, properties
152
+ except Exception as e:
153
+ logger.error(f"Error in process: {str(e)}\n{traceback.format_exc()}")
154
+ raise
155
+
156
+ # FastAPI Setup
157
+ app = FastAPI(title="Object Detection API")
158
+
159
+ @app.post("/detect")
160
+ async def detect_objects_endpoint(
161
+ file: UploadFile = File(None),
162
+ image_url: str = Form(None),
163
+ model_name: str = Form(VALID_MODELS[0])
164
+ ):
165
+ """FastAPI endpoint to detect objects in an image from file or URL."""
166
+ try:
167
+ if (file is None and not image_url) or (file is not None and image_url):
168
+ raise HTTPException(status_code=400, detail="Provide either an image file or an image URL, but not both.")
169
+
170
+ if file:
171
+ if not file.content_type.startswith("image/"):
172
+ raise HTTPException(status_code=400, detail="File must be an image")
173
+ contents = await file.read()
174
+ image = Image.open(BytesIO(contents)).convert("RGB")
175
+ else:
176
+ response = requests.get(image_url, timeout=10)
177
+ response.raise_for_status()
178
+ image = Image.open(BytesIO(response.content)).convert("RGB")
179
+
180
+ if model_name not in VALID_MODELS:
181
+ raise HTTPException(status_code=400, detail=f"Invalid model. Choose from: {VALID_MODELS}")
182
+
183
+ detected_image, detected_objects, detected_confidences, unique_objects, unique_confidences, _ = process(image, model_name)
184
+
185
+ buffered = BytesIO()
186
+ detected_image.save(buffered, format="PNG")
187
+ img_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
188
+ img_url = f"data:image/png;base64,{img_base64}"
189
+
190
+ return JSONResponse(content={
191
+ "image_url": img_url,
192
+ "detected_objects": detected_objects,
193
+ "confidence_scores": detected_confidences,
194
+ "unique_objects": unique_objects,
195
+ "unique_confidence_scores": unique_confidences
196
+ })
197
+ except Exception as e:
198
+ logger.error(f"Error in FastAPI endpoint: {str(e)}\n{traceback.format_exc()}")
199
+ raise HTTPException(status_code=500, detail=f"Error processing image: {str(e)}")
200
+
201
+ # Gradio UI
202
+ def create_gradio_ui():
203
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="gray")) as demo:
204
+ gr.Markdown(
205
+ """
206
+ # 🚀 Object Detection App
207
+ Upload an image or provide a URL to detect objects using state-of-the-art transformer models (DETR, YOLOS).
208
+ """
209
+ )
210
+
211
+ with gr.Tabs():
212
+ with gr.Tab("📷 Image Upload"):
213
+ with gr.Row():
214
+ with gr.Column(scale=1):
215
+ gr.Markdown("### Input")
216
+ model_choice = gr.Dropdown(
217
+ choices=VALID_MODELS,
218
+ value=VALID_MODELS[0],
219
+ label="🔎 Select Model",
220
+ info="Choose a model for object detection or panoptic segmentation."
221
+ )
222
+ model_info = gr.Markdown(
223
+ f"**Model Info**: {MODEL_DESCRIPTIONS[VALID_MODELS[0]]}",
224
+ visible=True
225
+ )
226
+ image_input = gr.Image(type="pil", label="📷 Upload Image")
227
+ image_url_input = gr.Textbox(
228
+ label="🔗 Image URL",
229
+ placeholder="https://example.com/image.jpg"
230
+ )
231
+ with gr.Row():
232
+ submit_btn = gr.Button("✨ Detect", variant="primary")
233
+ clear_btn = gr.Button("🗑️ Clear", variant="secondary")
234
+
235
+ model_choice.change(
236
+ fn=lambda model_name: f"**Model Info**: {MODEL_DESCRIPTIONS.get(model_name, 'No description available.')}",
237
+ inputs=model_choice,
238
+ outputs=model_info
239
+ )
240
+
241
+ with gr.Column(scale=2):
242
+ gr.Markdown("### Results")
243
+ error_output = gr.Textbox(
244
+ label="⚠️ Errors",
245
+ visible=False,
246
+ lines=3,
247
+ max_lines=5
248
+ )
249
+ output_image = gr.Image(
250
+ type="pil",
251
+ label="🎯 Detected Image",
252
+ interactive=False
253
+ )
254
+ with gr.Row():
255
+ objects_output = gr.DataFrame(
256
+ label="📋 Detected Objects",
257
+ interactive=False,
258
+ value=None
259
+ )
260
+ unique_objects_output = gr.DataFrame(
261
+ label="🔍 Unique Objects",
262
+ interactive=False,
263
+ value=None
264
+ )
265
+ properties_output = gr.DataFrame(
266
+ label="📄 Image Properties",
267
+ interactive=False,
268
+ value=None
269
+ )
270
+
271
+ def process_for_gradio(image, url, model_name):
272
+ try:
273
+ if image is None and not url:
274
+ return None, None, None, None, "Please provide an image or URL"
275
+ if image and url:
276
+ return None, None, None, None, "Please provide either an image or URL, not both"
277
+
278
+ if url:
279
+ response = requests.get(url, timeout=10)
280
+ response.raise_for_status()
281
+ image = Image.open(BytesIO(response.content)).convert("RGB")
282
+
283
+ detected_image, objects, scores, unique_objects, unique_scores, properties = process(image, model_name)
284
+ objects_df = pd.DataFrame({
285
+ "Object": objects,
286
+ "Confidence Score": [f"{score:.2f}" for score in scores]
287
+ }) if objects else pd.DataFrame(columns=["Object", "Confidence Score"])
288
+ unique_objects_df = pd.DataFrame({
289
+ "Unique Object": unique_objects,
290
+ "Confidence Score": [f"{score:.2f}" for score in unique_scores]
291
+ }) if unique_objects else pd.DataFrame(columns=["Unique Object", "Confidence Score"])
292
+ properties_df = pd.DataFrame([properties]) if properties else pd.DataFrame(columns=properties.keys())
293
+ return detected_image, objects_df, unique_objects_df, properties_df, ""
294
+ except Exception as e:
295
+ error_msg = f"Error processing image: {str(e)}"
296
+ logger.error(f"{error_msg}\n{traceback.format_exc()}")
297
+ return None, None, None, None, error_msg
298
+
299
+ submit_btn.click(
300
+ fn=process_for_gradio,
301
+ inputs=[image_input, image_url_input, model_choice],
302
+ outputs=[output_image, objects_output, unique_objects_output, properties_output, error_output]
303
+ )
304
+
305
+ clear_btn.click(
306
+ fn=lambda: [None, "", None, None, None, None],
307
+ inputs=None,
308
+ outputs=[image_input, image_url_input, output_image, objects_output, unique_objects_output, properties_output, error_output]
309
+ )
310
+
311
+ with gr.Tab("🔗 URL Input"):
312
+ gr.Markdown("### Process Image from URL")
313
+ image_url_input = gr.Textbox(
314
+ label="🔗 Image URL",
315
+ placeholder="https://example.com/image.jpg"
316
+ )
317
+ url_model_choice = gr.Dropdown(
318
+ choices=VALID_MODELS,
319
+ value=VALID_MODELS[0],
320
+ label="🔎 Select Model"
321
+ )
322
+ url_model_info = gr.Markdown(
323
+ f"**Model Info**: {MODEL_DESCRIPTIONS[VALID_MODELS[0]]}",
324
+ visible=True
325
+ )
326
+ url_submit_btn = gr.Button("🔄 Process URL", variant="primary")
327
+ url_output = gr.JSON(label="API Response")
328
+
329
+ url_model_choice.change(
330
+ fn=lambda model_name: f"**Model Info**: {MODEL_DESCRIPTIONS.get(model_name, 'No description available.')}",
331
+ inputs=url_model_choice,
332
+ outputs=url_model_info
333
+ )
334
+
335
+ def process_url_for_gradio(url, model_name):
336
+ try:
337
+ response = requests.get(url, timeout=10)
338
+ response.raise_for_status()
339
+ image = Image.open(BytesIO(response.content)).convert("RGB")
340
+ detected_image, objects, scores, unique_objects, unique_scores, _ = process(image, model_name)
341
+ buffered = BytesIO()
342
+ detected_image.save(buffered, format="PNG")
343
+ img_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
344
+ return {
345
+ "image_url": f"data:image/png;base64,{img_base64}",
346
+ "detected_objects": objects,
347
+ "confidence_scores": scores,
348
+ "unique_objects": unique_objects,
349
+ "unique_confidence_scores": unique_scores
350
+ }
351
+ except Exception as e:
352
+ error_msg = f"Error processing URL: {str(e)}"
353
+ logger.error(f"{error_msg}\n{traceback.format_exc()}")
354
+ return {"error": error_msg}
355
+
356
+ url_submit_btn.click(
357
+ fn=process_url_for_gradio,
358
+ inputs=[image_url_input, url_model_choice],
359
+ outputs=[url_output]
360
+ )
361
+
362
+ with gr.Tab("ℹ️ Help"):
363
+ gr.Markdown(
364
+ """
365
+ ## How to Use
366
+ - **Image Upload**: Select a model, upload an image or provide a URL, and click "Detect" to see detected objects and image properties.
367
+ - **URL Input**: Enter an image URL, select a model, and click "Process URL" to get results in JSON format.
368
+ - **Models**: Choose from DETR (object detection or panoptic segmentation) or YOLOS (lightweight detection).
369
+ - **Clear**: Reset all inputs and outputs using the "Clear" button.
370
+ - **Errors**: Check the error box for any processing issues.
371
+
372
+ ## Tips
373
+ - Use high-quality images for better detection results.
374
+ - Panoptic models (e.g., DETR-ResNet-50-panoptic) provide segmentation masks for complex scenes.
375
+ - For faster processing, try YOLOS-Tiny on resource-constrained devices.
376
+ """
377
+ )
378
+
379
+ return demo
380
+
381
+ if __name__ == "__main__":
382
+ demo = create_gradio_ui()
383
+ demo.launch()
384
+ # To run FastAPI, use: uvicorn object_detection:app --host 0.0.0.0 --port 8000
hf_space/.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
hf_space/README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: ObjectDetection
3
+ emoji: 🐢
4
+ colorFrom: red
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 5.29.0
8
+ app_file: app.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ transformers
2
+ torch
3
+ tensorflow
4
+ gradio
5
+ pillow
6
+ timm
7
+ fastapi
8
+ requests