|
import os |
|
import re |
|
import torch |
|
import traceback |
|
import gradio as gr |
|
from transformers import DonutProcessor, VisionEncoderDecoderModel |
|
|
|
|
|
MODEL_NAME = "naver-clova-ix/donut-base-finetuned-cord-v2" |
|
processor = DonutProcessor.from_pretrained(MODEL_NAME) |
|
model = VisionEncoderDecoderModel.from_pretrained(MODEL_NAME) |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model.to(device) |
|
|
|
|
|
def ocr_donut(image): |
|
try: |
|
if image is None: |
|
return {"error": "No image provided."} |
|
task_prompt = "<s_cord-v2>" |
|
decoder_input_ids = processor.tokenizer( |
|
task_prompt, add_special_tokens=False, return_tensors="pt" |
|
).input_ids.to(device) |
|
pixel_values = processor(image.convert("RGB"), return_tensors="pt").pixel_values.to(device) |
|
|
|
outputs = model.generate( |
|
pixel_values, |
|
decoder_input_ids=decoder_input_ids, |
|
max_length=model.config.decoder.max_position_embeddings, |
|
pad_token_id=processor.tokenizer.pad_token_id, |
|
eos_token_id=processor.tokenizer.eos_token_id, |
|
use_cache=True, |
|
bad_words_ids=[[processor.tokenizer.unk_token_id]], |
|
return_dict_in_generate=True, |
|
) |
|
|
|
seq = processor.batch_decode(outputs.sequences)[0] |
|
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") |
|
seq = re.sub(r"<.*?>", "", seq, count=1).strip() |
|
return {"result": processor.token2json(seq)} |
|
|
|
except Exception: |
|
tb = traceback.format_exc() |
|
print(tb) |
|
return {"error": tb} |
|
|
|
|
|
custom_css = """ |
|
body { background: #f0f2f5; font-family: 'Segoe UI', Tahoma, sans-serif; } |
|
.gradio-container { max-width: 900px; margin: 40px auto; padding: 20px; } |
|
.header { text-align: center; margin-bottom: 30px; } |
|
.header h1 { font-size: 2.8rem; color: #333; margin: 0; } |
|
.header p { color: #666; margin-top: 8px; } |
|
|
|
.input-box, .output-box { |
|
background: #fff; |
|
border-radius: 8px; |
|
box-shadow: 0 2px 8px rgba(0,0,0,0.1); |
|
padding: 20px; |
|
} |
|
.input-box { margin-right: 10px; } |
|
.output-box { margin-left: 10px; } |
|
|
|
.gr-button { |
|
background: #5a8dee !important; |
|
color: #fff !important; |
|
border-radius: 6px !important; |
|
padding: 10px 20px !important; |
|
font-size: 1rem !important; |
|
margin-top: 10px !important; |
|
transition: background 0.2s ease; |
|
} |
|
.gr-button:hover { background: #3f6fcc !important; } |
|
|
|
.footer { |
|
text-align: center; |
|
margin-top: 30px; |
|
color: #999; |
|
font-size: 0.85rem; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(css=custom_css, title="Donut OCR App") as demo: |
|
|
|
gr.HTML( |
|
""" |
|
<div class="header"> |
|
<h1>π Donut OCR</h1> |
|
<p>Industrial AI Engineering Week 8 Assignment</p> |
|
</div> |
|
""" |
|
) |
|
|
|
|
|
with gr.Row(): |
|
with gr.Column(elem_classes="input-box"): |
|
image_input = gr.Image(type="pil", label="Upload Document Image") |
|
run_btn = gr.Button("Run OCR", elem_id="run-btn") |
|
with gr.Column(elem_classes="output-box"): |
|
result_box = gr.JSON(label="Output") |
|
|
|
|
|
run_btn.click(fn=ocr_donut, inputs=image_input, outputs=result_box) |
|
|
|
|
|
gr.HTML( |
|
""" |
|
<div class="footer"> |
|
<p>Powered by Naver Clova Donut</p> |
|
</div> |
|
""" |
|
) |
|
|
|
|
|
demo.launch( |
|
server_name="0.0.0.0", |
|
server_port=int(os.environ.get("PORT", 7860)), |
|
debug=True |
|
) |
|
|