File size: 4,285 Bytes
7a6934f
 
 
 
58a66e8
 
7a6934f
58a66e8
7a6934f
 
 
 
 
 
 
58a66e8
7a6934f
 
 
 
 
 
58a66e8
7a6934f
 
 
 
 
 
 
 
 
 
 
 
 
 
58a66e8
 
 
 
7a6934f
 
 
 
 
 
58a66e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07e5dc5
 
 
 
 
 
 
 
58a66e8
 
 
 
 
 
 
 
 
 
 
 
 
07e5dc5
 
 
ce9c63c
07e5dc5
 
 
7a6934f
58a66e8
7a6934f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import os
import re
import torch
import traceback
import gradio as gr
from transformers import DonutProcessor, VisionEncoderDecoderModel

# ─── λͺ¨λΈ λ‘œλ”© ─────────────────────────────────────────────────────────
MODEL_NAME = "naver-clova-ix/donut-base-finetuned-cord-v2"
processor = DonutProcessor.from_pretrained(MODEL_NAME)
model = VisionEncoderDecoderModel.from_pretrained(MODEL_NAME)

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

# ─── OCR ν•¨μˆ˜ ──────────────────────────────────────────────────────────
def ocr_donut(image):
    try:
        if image is None:
            return {"error": "No image provided."}
        task_prompt = "<s_cord-v2>"
        decoder_input_ids = processor.tokenizer(
            task_prompt, add_special_tokens=False, return_tensors="pt"
        ).input_ids.to(device)
        pixel_values = processor(image.convert("RGB"), return_tensors="pt").pixel_values.to(device)

        outputs = model.generate(
            pixel_values,
            decoder_input_ids=decoder_input_ids,
            max_length=model.config.decoder.max_position_embeddings,
            pad_token_id=processor.tokenizer.pad_token_id,
            eos_token_id=processor.tokenizer.eos_token_id,
            use_cache=True,
            bad_words_ids=[[processor.tokenizer.unk_token_id]],
            return_dict_in_generate=True,
        )

        seq = processor.batch_decode(outputs.sequences)[0]
        seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
        seq = re.sub(r"<.*?>", "", seq, count=1).strip()
        return {"result": processor.token2json(seq)}

    except Exception:
        tb = traceback.format_exc()
        print(tb)
        return {"error": tb}

# ─── CSS μŠ€νƒ€μΌλ§ ────────────────────────────────────────────────────
custom_css = """
body { background: #f0f2f5; font-family: 'Segoe UI', Tahoma, sans-serif; }
.gradio-container { max-width: 900px; margin: 40px auto; padding: 20px; }
.header { text-align: center; margin-bottom: 30px; }
.header h1 { font-size: 2.8rem; color: #333; margin: 0; }
.header p { color: #666; margin-top: 8px; }

.input-box, .output-box {
    background: #fff;
    border-radius: 8px;
    box-shadow: 0 2px 8px rgba(0,0,0,0.1);
    padding: 20px;
}
.input-box { margin-right: 10px; }
.output-box { margin-left: 10px; }

.gr-button {
    background: #5a8dee !important;
    color: #fff !important;
    border-radius: 6px !important;
    padding: 10px 20px !important;
    font-size: 1rem !important;
    margin-top: 10px !important;
    transition: background 0.2s ease;
}
.gr-button:hover { background: #3f6fcc !important; }

.footer {
    text-align: center;
    margin-top: 30px;
    color: #999;
    font-size: 0.85rem;
}
"""

# ─── Blocks λ ˆμ΄μ•„μ›ƒ ──────────────────────────────────────────────────
with gr.Blocks(css=custom_css, title="Donut OCR App") as demo:
    # 헀더
    gr.HTML(
        """
        <div class="header">
          <h1>πŸ“„ Donut OCR</h1>
          <p>Industrial AI Engineering Week 8 Assignment</p>        
        </div>
        """
    )

    # μž…λ ₯/좜λ ₯ μ˜μ—­
    with gr.Row():
        with gr.Column(elem_classes="input-box"):
            image_input = gr.Image(type="pil", label="Upload Document Image")
            run_btn = gr.Button("Run OCR", elem_id="run-btn")
        with gr.Column(elem_classes="output-box"):
            result_box = gr.JSON(label="Output")

    # λ²„νŠΌ 클릭 μ—°κ²°
    run_btn.click(fn=ocr_donut, inputs=image_input, outputs=result_box)

    # ν‘Έν„°
    gr.HTML(
        """
        <div class="footer">
          <p>Powered by Naver Clova Donut</p>
        </div>
        """
    )

# Spaces μ‹€ν–‰
demo.launch(
    server_name="0.0.0.0",
    server_port=int(os.environ.get("PORT", 7860)),
    debug=True
)