IsshikiHugh's picture
feat: CPU demo
5ac1897
import cv2
import torch
import numpy as np
from pytorch3d.renderer import (
PerspectiveCameras,
TexturesVertex,
PointLights,
Materials,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
)
from pytorch3d.structures import Meshes
from pytorch3d.structures.meshes import join_meshes_as_scene
from pytorch3d.renderer.cameras import look_at_rotation
from pytorch3d.transforms import axis_angle_to_matrix
from .utils import get_colors, checkerboard_geometry
colors_str_map = {
"gray": [0.8, 0.8, 0.8],
"green": [39, 194, 128],
}
def overlay_image_onto_background(image, mask, bbox, background):
if isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
if isinstance(mask, torch.Tensor):
mask = mask.detach().cpu().numpy()
out_image = background.copy()
bbox = bbox[0].int().cpu().numpy().copy()
roi_image = out_image[bbox[1] : bbox[3], bbox[0] : bbox[2]]
roi_image[mask] = image[mask]
out_image[bbox[1] : bbox[3], bbox[0] : bbox[2]] = roi_image
return out_image
def update_intrinsics_from_bbox(K_org, bbox):
device, dtype = K_org.device, K_org.dtype
K = torch.zeros((K_org.shape[0], 4, 4)).to(device=device, dtype=dtype)
K[:, :3, :3] = K_org.clone()
K[:, 2, 2] = 0
K[:, 2, -1] = 1
K[:, -1, 2] = 1
image_sizes = []
for idx, bbox in enumerate(bbox):
left, upper, right, lower = bbox
cx, cy = K[idx, 0, 2], K[idx, 1, 2]
new_cx = cx - left
new_cy = cy - upper
new_height = max(lower - upper, 1)
new_width = max(right - left, 1)
new_cx = new_width - new_cx
new_cy = new_height - new_cy
K[idx, 0, 2] = new_cx
K[idx, 1, 2] = new_cy
image_sizes.append((int(new_height), int(new_width)))
return K, image_sizes
def perspective_projection(x3d, K, R=None, T=None):
if R != None:
x3d = torch.matmul(R, x3d.transpose(1, 2)).transpose(1, 2)
if T != None:
x3d = x3d + T.transpose(1, 2)
x2d = torch.div(x3d, x3d[..., 2:])
x2d = torch.matmul(K, x2d.transpose(-1, -2)).transpose(-1, -2)[..., :2]
return x2d
def compute_bbox_from_points(X, img_w, img_h, scaleFactor=1.2):
left = torch.clamp(X.min(1)[0][:, 0], min=0, max=img_w)
right = torch.clamp(X.max(1)[0][:, 0], min=0, max=img_w)
top = torch.clamp(X.min(1)[0][:, 1], min=0, max=img_h)
bottom = torch.clamp(X.max(1)[0][:, 1], min=0, max=img_h)
cx = (left + right) / 2
cy = (top + bottom) / 2
width = right - left
height = bottom - top
new_left = torch.clamp(cx - width / 2 * scaleFactor, min=0, max=img_w - 1)
new_right = torch.clamp(cx + width / 2 * scaleFactor, min=1, max=img_w)
new_top = torch.clamp(cy - height / 2 * scaleFactor, min=0, max=img_h - 1)
new_bottom = torch.clamp(cy + height / 2 * scaleFactor, min=1, max=img_h)
bbox = torch.stack((new_left.detach(), new_top.detach(), new_right.detach(), new_bottom.detach())).int().float().T
return bbox
class Renderer:
def __init__(self, width, height, focal_length=None, device="cuda", faces=None, K=None):
self.width = width
self.height = height
assert (focal_length is not None) ^ (K is not None), "focal_length and K are mutually exclusive"
self.device = device
if faces is not None:
if isinstance(faces, np.ndarray):
faces = torch.from_numpy((faces).astype("int"))
if len(faces.shape) == 2:
self.faces = faces.unsqueeze(0).to(self.device)
elif len(faces.shape) == 3:
self.faces = faces.to(self.device)
else:
raise ValueError("faces should have shape of (F, 3) or (N, F, 3)")
self.initialize_camera_params(focal_length, K)
self.lights = PointLights(device=device, location=[[0.0, 0.0, -10.0]])
self.create_renderer()
def create_renderer(self):
self.renderer = MeshRenderer(
rasterizer = MeshRasterizer(
raster_settings = RasterizationSettings(
image_size = self.image_sizes[0],
blur_radius = 1e-5,
bin_size = 0,
),
),
shader = SoftPhongShader(
device=self.device,
lights=self.lights,
),
)
def create_camera(self, R=None, T=None):
if R is not None:
self.R = R.clone().view(1, 3, 3).to(self.device)
if T is not None:
self.T = T.clone().view(1, 3).to(self.device)
return PerspectiveCameras(
device=self.device, R=self.R.mT, T=self.T, K=self.K_full, image_size=self.image_sizes, in_ndc=False
)
def initialize_camera_params(self, focal_length, K):
# Extrinsics
self.R = torch.diag(torch.tensor([1, 1, 1])).float().to(self.device).unsqueeze(0)
self.T = torch.tensor([0, 0, 0]).unsqueeze(0).float().to(self.device)
# Intrinsics
if K is not None:
self.K = K.float().reshape(1, 3, 3).to(self.device)
else:
assert focal_length is not None, "focal_length or K should be provided"
self.K = (
torch.tensor([[focal_length, 0, self.width / 2], [0, focal_length, self.height / 2], [0, 0, 1]])
.float()
.reshape(1, 3, 3)
.to(self.device)
)
self.bboxes = torch.tensor([[0, 0, self.width, self.height]]).float()
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, self.bboxes)
self.cameras = self.create_camera()
def set_intrinsic(self, K):
self.K = K.reshape(1, 3, 3)
def set_ground(self, length, center_x, center_z):
device = self.device
length, center_x, center_z = map(float, (length, center_x, center_z))
v, f, vc, fc = map(torch.from_numpy, checkerboard_geometry(length=length * 2, c1=center_x, c2=center_z, up="y"))
v, f, vc = v.to(device), f.to(device), vc.to(device)
self.ground_geometry = [v, f, vc]
def update_bbox(self, x3d, scale=2.0, mask=None):
"""Update bbox of cameras from the given 3d points
x3d: input 3D keypoints (or vertices), (num_frames, num_points, 3)
"""
if x3d.size(-1) != 3:
x2d = x3d.unsqueeze(0)
else:
x2d = perspective_projection(x3d.unsqueeze(0), self.K, self.R, self.T.reshape(1, 3, 1))
if mask is not None:
x2d = x2d[:, ~mask]
bbox = compute_bbox_from_points(x2d, self.width, self.height, scale)
self.bboxes = bbox
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
self.cameras = self.create_camera()
self.create_renderer()
def reset_bbox(
self,
):
bbox = torch.zeros((1, 4)).float().to(self.device)
bbox[0, 2] = self.width
bbox[0, 3] = self.height
self.bboxes = bbox
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
self.cameras = self.create_camera()
self.create_renderer()
def render_mesh(self, vertices, background=None, colors=[0.8, 0.8, 0.8], VI=50):
if vertices.dim() == 2:
vertices = vertices.unsqueeze(0) # (V, 3) -> (1, V, 3)
elif vertices.dim() != 3:
raise ValueError("vertices should have shape of ((Nm,) V, 3)")
self.update_bbox(vertices.view(-1, 3)[::VI], scale=1.2)
if isinstance(colors, torch.Tensor):
# per-vertex color
verts_features = colors.to(device=vertices.device, dtype=vertices.dtype)
colors = [0.8, 0.8, 0.8]
else:
if colors[0] > 1:
colors = [c / 255.0 for c in colors]
verts_features = torch.tensor(colors).reshape(1, 1, 3).to(device=vertices.device, dtype=vertices.dtype)
verts_features = verts_features.repeat(vertices.shape[0], vertices.shape[1], 1)
textures = TexturesVertex(verts_features=verts_features)
mesh = Meshes(
verts=vertices,
faces=self.faces,
textures=textures,
)
materials = Materials(device=self.device, specular_color=(colors,), shininess=0)
results = torch.flip(self.renderer(mesh, materials=materials, cameras=self.cameras, lights=self.lights), [1, 2])
image = results[0, ..., :3] * 255
mask = results[0, ..., -1] > 1e-3
if background is None:
background = np.ones((self.height, self.width, 3)).astype(np.uint8) * 255
image = overlay_image_onto_background(image, mask, self.bboxes, background.copy())
self.reset_bbox()
return image
def render_with_ground(self, verts, colors, cameras, lights, faces=None):
"""
:param verts (N, V, 3), potential multiple people
:param colors (N, 3) or (N, V, 3)
:param faces (N, F, 3), optional, otherwise self.faces is used will be used
"""
# Sanity check of input verts, colors and faces: (B, V, 3), (B, F, 3), (B, V, 3)
N, V, _ = verts.shape
if faces is None:
faces = self.faces.clone().expand(N, -1, -1)
else:
assert len(faces.shape) == 3, "faces should have shape of (N, F, 3)"
assert len(colors.shape) in [2, 3]
if len(colors.shape) == 2:
assert len(colors) == N, "colors of shape 2 should be (N, 3)"
colors = colors[:, None]
colors = colors.expand(N, V, -1)[..., :3]
# (V, 3), (F, 3), (V, 3)
gv, gf, gc = self.ground_geometry
verts = list(torch.unbind(verts, dim=0)) + [gv]
faces = list(torch.unbind(faces, dim=0)) + [gf]
colors = list(torch.unbind(colors, dim=0)) + [gc[..., :3]]
mesh = create_meshes(verts, faces, colors)
materials = Materials(device=self.device, shininess=0)
results = self.renderer(mesh, cameras=cameras, lights=lights, materials=materials)
image = (results[0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
return image
def create_meshes(verts, faces, colors):
"""
:param verts (B, V, 3)
:param faces (B, F, 3)
:param colors (B, V, 3)
"""
textures = TexturesVertex(verts_features=colors)
meshes = Meshes(verts=verts, faces=faces, textures=textures)
return join_meshes_as_scene(meshes)
def get_global_cameras(verts, device="cuda", distance=5, position=(-5.0, 5.0, 0.0)):
"""This always put object at the center of view"""
positions = torch.tensor([position]).repeat(len(verts), 1)
targets = verts.mean(1)
directions = targets - positions
directions = directions / torch.norm(directions, dim=-1).unsqueeze(-1) * distance
positions = targets - directions
rotation = look_at_rotation(positions, targets).mT
translation = -(rotation @ positions.unsqueeze(-1)).squeeze(-1)
lights = PointLights(device=device, location=[position])
return rotation, translation, lights
def get_global_cameras_static(verts, beta=4.0, cam_height_degree=30, target_center_height=0.75, device="cuda"):
L, V, _ = verts.shape
# Compute target trajectory, denote as center + scale
targets = verts.mean(1) # (L, 3)
targets[:, 1] = 0 # project to xz-plane
target_center = targets.mean(0) # (3,)
target_scale, target_idx = torch.norm(targets - target_center, dim=-1).max(0)
# a 45 degree vec from longest axis
long_vec = targets[target_idx] - target_center # (x, 0, z)
long_vec = long_vec / torch.norm(long_vec)
R = axis_angle_to_matrix(torch.tensor([0, np.pi / 4, 0])).to(long_vec)
vec = R @ long_vec
# Compute camera position (center + scale * vec * beta) + y=4
target_scale = max(target_scale, 1.0) * beta
position = target_center + vec * target_scale
position[1] = target_scale * np.tan(np.pi * cam_height_degree / 180) + target_center_height
# Compute camera rotation and translation
positions = position.unsqueeze(0).repeat(L, 1)
target_centers = target_center.unsqueeze(0).repeat(L, 1)
target_centers[:, 1] = target_center_height
rotation = look_at_rotation(positions, target_centers).mT
translation = -(rotation @ positions.unsqueeze(-1)).squeeze(-1)
lights = PointLights(device=device, location=[position.tolist()])
return rotation, translation, lights