Spaces:
Sleeping
Sleeping
File size: 12,495 Bytes
5ac1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
import cv2
import torch
import numpy as np
from pytorch3d.renderer import (
PerspectiveCameras,
TexturesVertex,
PointLights,
Materials,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
)
from pytorch3d.structures import Meshes
from pytorch3d.structures.meshes import join_meshes_as_scene
from pytorch3d.renderer.cameras import look_at_rotation
from pytorch3d.transforms import axis_angle_to_matrix
from .utils import get_colors, checkerboard_geometry
colors_str_map = {
"gray": [0.8, 0.8, 0.8],
"green": [39, 194, 128],
}
def overlay_image_onto_background(image, mask, bbox, background):
if isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
if isinstance(mask, torch.Tensor):
mask = mask.detach().cpu().numpy()
out_image = background.copy()
bbox = bbox[0].int().cpu().numpy().copy()
roi_image = out_image[bbox[1] : bbox[3], bbox[0] : bbox[2]]
roi_image[mask] = image[mask]
out_image[bbox[1] : bbox[3], bbox[0] : bbox[2]] = roi_image
return out_image
def update_intrinsics_from_bbox(K_org, bbox):
device, dtype = K_org.device, K_org.dtype
K = torch.zeros((K_org.shape[0], 4, 4)).to(device=device, dtype=dtype)
K[:, :3, :3] = K_org.clone()
K[:, 2, 2] = 0
K[:, 2, -1] = 1
K[:, -1, 2] = 1
image_sizes = []
for idx, bbox in enumerate(bbox):
left, upper, right, lower = bbox
cx, cy = K[idx, 0, 2], K[idx, 1, 2]
new_cx = cx - left
new_cy = cy - upper
new_height = max(lower - upper, 1)
new_width = max(right - left, 1)
new_cx = new_width - new_cx
new_cy = new_height - new_cy
K[idx, 0, 2] = new_cx
K[idx, 1, 2] = new_cy
image_sizes.append((int(new_height), int(new_width)))
return K, image_sizes
def perspective_projection(x3d, K, R=None, T=None):
if R != None:
x3d = torch.matmul(R, x3d.transpose(1, 2)).transpose(1, 2)
if T != None:
x3d = x3d + T.transpose(1, 2)
x2d = torch.div(x3d, x3d[..., 2:])
x2d = torch.matmul(K, x2d.transpose(-1, -2)).transpose(-1, -2)[..., :2]
return x2d
def compute_bbox_from_points(X, img_w, img_h, scaleFactor=1.2):
left = torch.clamp(X.min(1)[0][:, 0], min=0, max=img_w)
right = torch.clamp(X.max(1)[0][:, 0], min=0, max=img_w)
top = torch.clamp(X.min(1)[0][:, 1], min=0, max=img_h)
bottom = torch.clamp(X.max(1)[0][:, 1], min=0, max=img_h)
cx = (left + right) / 2
cy = (top + bottom) / 2
width = right - left
height = bottom - top
new_left = torch.clamp(cx - width / 2 * scaleFactor, min=0, max=img_w - 1)
new_right = torch.clamp(cx + width / 2 * scaleFactor, min=1, max=img_w)
new_top = torch.clamp(cy - height / 2 * scaleFactor, min=0, max=img_h - 1)
new_bottom = torch.clamp(cy + height / 2 * scaleFactor, min=1, max=img_h)
bbox = torch.stack((new_left.detach(), new_top.detach(), new_right.detach(), new_bottom.detach())).int().float().T
return bbox
class Renderer:
def __init__(self, width, height, focal_length=None, device="cuda", faces=None, K=None):
self.width = width
self.height = height
assert (focal_length is not None) ^ (K is not None), "focal_length and K are mutually exclusive"
self.device = device
if faces is not None:
if isinstance(faces, np.ndarray):
faces = torch.from_numpy((faces).astype("int"))
if len(faces.shape) == 2:
self.faces = faces.unsqueeze(0).to(self.device)
elif len(faces.shape) == 3:
self.faces = faces.to(self.device)
else:
raise ValueError("faces should have shape of (F, 3) or (N, F, 3)")
self.initialize_camera_params(focal_length, K)
self.lights = PointLights(device=device, location=[[0.0, 0.0, -10.0]])
self.create_renderer()
def create_renderer(self):
self.renderer = MeshRenderer(
rasterizer = MeshRasterizer(
raster_settings = RasterizationSettings(
image_size = self.image_sizes[0],
blur_radius = 1e-5,
bin_size = 0,
),
),
shader = SoftPhongShader(
device=self.device,
lights=self.lights,
),
)
def create_camera(self, R=None, T=None):
if R is not None:
self.R = R.clone().view(1, 3, 3).to(self.device)
if T is not None:
self.T = T.clone().view(1, 3).to(self.device)
return PerspectiveCameras(
device=self.device, R=self.R.mT, T=self.T, K=self.K_full, image_size=self.image_sizes, in_ndc=False
)
def initialize_camera_params(self, focal_length, K):
# Extrinsics
self.R = torch.diag(torch.tensor([1, 1, 1])).float().to(self.device).unsqueeze(0)
self.T = torch.tensor([0, 0, 0]).unsqueeze(0).float().to(self.device)
# Intrinsics
if K is not None:
self.K = K.float().reshape(1, 3, 3).to(self.device)
else:
assert focal_length is not None, "focal_length or K should be provided"
self.K = (
torch.tensor([[focal_length, 0, self.width / 2], [0, focal_length, self.height / 2], [0, 0, 1]])
.float()
.reshape(1, 3, 3)
.to(self.device)
)
self.bboxes = torch.tensor([[0, 0, self.width, self.height]]).float()
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, self.bboxes)
self.cameras = self.create_camera()
def set_intrinsic(self, K):
self.K = K.reshape(1, 3, 3)
def set_ground(self, length, center_x, center_z):
device = self.device
length, center_x, center_z = map(float, (length, center_x, center_z))
v, f, vc, fc = map(torch.from_numpy, checkerboard_geometry(length=length * 2, c1=center_x, c2=center_z, up="y"))
v, f, vc = v.to(device), f.to(device), vc.to(device)
self.ground_geometry = [v, f, vc]
def update_bbox(self, x3d, scale=2.0, mask=None):
"""Update bbox of cameras from the given 3d points
x3d: input 3D keypoints (or vertices), (num_frames, num_points, 3)
"""
if x3d.size(-1) != 3:
x2d = x3d.unsqueeze(0)
else:
x2d = perspective_projection(x3d.unsqueeze(0), self.K, self.R, self.T.reshape(1, 3, 1))
if mask is not None:
x2d = x2d[:, ~mask]
bbox = compute_bbox_from_points(x2d, self.width, self.height, scale)
self.bboxes = bbox
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
self.cameras = self.create_camera()
self.create_renderer()
def reset_bbox(
self,
):
bbox = torch.zeros((1, 4)).float().to(self.device)
bbox[0, 2] = self.width
bbox[0, 3] = self.height
self.bboxes = bbox
self.K_full, self.image_sizes = update_intrinsics_from_bbox(self.K, bbox)
self.cameras = self.create_camera()
self.create_renderer()
def render_mesh(self, vertices, background=None, colors=[0.8, 0.8, 0.8], VI=50):
if vertices.dim() == 2:
vertices = vertices.unsqueeze(0) # (V, 3) -> (1, V, 3)
elif vertices.dim() != 3:
raise ValueError("vertices should have shape of ((Nm,) V, 3)")
self.update_bbox(vertices.view(-1, 3)[::VI], scale=1.2)
if isinstance(colors, torch.Tensor):
# per-vertex color
verts_features = colors.to(device=vertices.device, dtype=vertices.dtype)
colors = [0.8, 0.8, 0.8]
else:
if colors[0] > 1:
colors = [c / 255.0 for c in colors]
verts_features = torch.tensor(colors).reshape(1, 1, 3).to(device=vertices.device, dtype=vertices.dtype)
verts_features = verts_features.repeat(vertices.shape[0], vertices.shape[1], 1)
textures = TexturesVertex(verts_features=verts_features)
mesh = Meshes(
verts=vertices,
faces=self.faces,
textures=textures,
)
materials = Materials(device=self.device, specular_color=(colors,), shininess=0)
results = torch.flip(self.renderer(mesh, materials=materials, cameras=self.cameras, lights=self.lights), [1, 2])
image = results[0, ..., :3] * 255
mask = results[0, ..., -1] > 1e-3
if background is None:
background = np.ones((self.height, self.width, 3)).astype(np.uint8) * 255
image = overlay_image_onto_background(image, mask, self.bboxes, background.copy())
self.reset_bbox()
return image
def render_with_ground(self, verts, colors, cameras, lights, faces=None):
"""
:param verts (N, V, 3), potential multiple people
:param colors (N, 3) or (N, V, 3)
:param faces (N, F, 3), optional, otherwise self.faces is used will be used
"""
# Sanity check of input verts, colors and faces: (B, V, 3), (B, F, 3), (B, V, 3)
N, V, _ = verts.shape
if faces is None:
faces = self.faces.clone().expand(N, -1, -1)
else:
assert len(faces.shape) == 3, "faces should have shape of (N, F, 3)"
assert len(colors.shape) in [2, 3]
if len(colors.shape) == 2:
assert len(colors) == N, "colors of shape 2 should be (N, 3)"
colors = colors[:, None]
colors = colors.expand(N, V, -1)[..., :3]
# (V, 3), (F, 3), (V, 3)
gv, gf, gc = self.ground_geometry
verts = list(torch.unbind(verts, dim=0)) + [gv]
faces = list(torch.unbind(faces, dim=0)) + [gf]
colors = list(torch.unbind(colors, dim=0)) + [gc[..., :3]]
mesh = create_meshes(verts, faces, colors)
materials = Materials(device=self.device, shininess=0)
results = self.renderer(mesh, cameras=cameras, lights=lights, materials=materials)
image = (results[0, ..., :3].cpu().numpy() * 255).astype(np.uint8)
return image
def create_meshes(verts, faces, colors):
"""
:param verts (B, V, 3)
:param faces (B, F, 3)
:param colors (B, V, 3)
"""
textures = TexturesVertex(verts_features=colors)
meshes = Meshes(verts=verts, faces=faces, textures=textures)
return join_meshes_as_scene(meshes)
def get_global_cameras(verts, device="cuda", distance=5, position=(-5.0, 5.0, 0.0)):
"""This always put object at the center of view"""
positions = torch.tensor([position]).repeat(len(verts), 1)
targets = verts.mean(1)
directions = targets - positions
directions = directions / torch.norm(directions, dim=-1).unsqueeze(-1) * distance
positions = targets - directions
rotation = look_at_rotation(positions, targets).mT
translation = -(rotation @ positions.unsqueeze(-1)).squeeze(-1)
lights = PointLights(device=device, location=[position])
return rotation, translation, lights
def get_global_cameras_static(verts, beta=4.0, cam_height_degree=30, target_center_height=0.75, device="cuda"):
L, V, _ = verts.shape
# Compute target trajectory, denote as center + scale
targets = verts.mean(1) # (L, 3)
targets[:, 1] = 0 # project to xz-plane
target_center = targets.mean(0) # (3,)
target_scale, target_idx = torch.norm(targets - target_center, dim=-1).max(0)
# a 45 degree vec from longest axis
long_vec = targets[target_idx] - target_center # (x, 0, z)
long_vec = long_vec / torch.norm(long_vec)
R = axis_angle_to_matrix(torch.tensor([0, np.pi / 4, 0])).to(long_vec)
vec = R @ long_vec
# Compute camera position (center + scale * vec * beta) + y=4
target_scale = max(target_scale, 1.0) * beta
position = target_center + vec * target_scale
position[1] = target_scale * np.tan(np.pi * cam_height_degree / 180) + target_center_height
# Compute camera rotation and translation
positions = position.unsqueeze(0).repeat(L, 1)
target_centers = target_center.unsqueeze(0).repeat(L, 1)
target_centers[:, 1] = target_center_height
rotation = look_at_rotation(positions, target_centers).mT
translation = -(rotation @ positions.unsqueeze(-1)).squeeze(-1)
lights = PointLights(device=device, location=[position.tolist()])
return rotation, translation, lights
|