IsshikiHugh's picture
feat: CPU demo
5ac1897
# -*- coding: utf-8 -*-
#
# Copyright (C) 2020 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG),
# acting on behalf of its Max Planck Institute for Intelligent Systems and the
# Max Planck Institute for Biological Cybernetics. All rights reserved.
#
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights
# on this computer program. You can only use this computer program if you have closed a license agreement
# with MPG or you get the right to use the computer program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and liable to prosecution.
# Contact: [email protected]
#
#
# If you use this code in a research publication please consider citing the following:
#
# STAR: Sparse Trained Articulated Human Body Regressor <https://arxiv.org/pdf/2008.08535.pdf>
#
#
# Code Developed by:
# Ahmed A. A. Osman, edited by Marilyn Keller
import scipy
import torch
import numpy as np
def build_homog_matrix(R, t=None):
""" Create a homogeneous matrix from rotation matrix and translation vector
@ R: rotation matrix of shape (B, Nj, 3, 3)
@ t: translation vector of shape (B, Nj, 3, 1)
returns: homogeneous matrix of shape (B, 4, 4)
By Marilyn Keller
"""
if t is None:
B = R.shape[0]
Nj = R.shape[1]
t = torch.zeros(B, Nj, 3, 1).to(R.device)
if R is None:
B = t.shape[0]
Nj = t.shape[1]
R = torch.eye(3).unsqueeze(0).unsqueeze(0).repeat(B, Nj, 1, 1).to(t.device)
B = t.shape[0]
Nj = t.shape[1]
# import ipdb; ipdb.set_trace()
assert R.shape == (B, Nj, 3, 3), f"R.shape: {R.shape}"
assert t.shape == (B, Nj, 3, 1), f"t.shape: {t.shape}"
G = torch.cat([R, t], dim=-1) # BxJx3x4 local transformation matrix
pad_row = torch.FloatTensor([0, 0, 0, 1]).to(R.device).view(1, 1, 1, 4).expand(B, Nj, -1, -1) # BxJx1x4
G = torch.cat([G, pad_row], dim=2) # BxJx4x4 padded to be 4x4 matrix an enable multiplication for the kinematic chain
return G
def matmul_chain(rot_list):
R_tot = rot_list[-1]
for i in range(len(rot_list)-2,-1,-1):
R_tot = torch.matmul(rot_list[i], R_tot)
return R_tot
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
"""
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
using Gram--Schmidt orthogonalization per Section B of [1].
Args:
d6: 6D rotation representation, of size (*, 6)
Returns:
batch of rotation matrices of size (*, 3, 3)
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
On the Continuity of Rotation Representations in Neural Networks.
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Retrieved from http://arxiv.org/abs/1812.07035
"""
import torch.nn.functional as F
a1, a2 = d6[..., :3], d6[..., 3:]
b1 = F.normalize(a1, dim=-1)
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
b2 = F.normalize(b2, dim=-1)
b3 = torch.cross(b1, b2, dim=-1)
return torch.stack((b1, b2, b3), dim=-2)
def rotation_matrix_from_vectors(vec1, vec2):
""" Find the rotation matrix that aligns vec1 to vec2
:param vec1: A 3d "source" vector (B x Nj x 3)
:param vec2: A 3d "destination" vector (B x Nj x 3)
:return mat: A rotation matrix (B x Nj x 3 x 3) which when applied to vec1, aligns it with vec2.
"""
for v_id, v in enumerate([vec1, vec2]):
# vectors shape should be B x Nj x 3
assert len(v.shape) == 3, f"Vectors {v_id} shape should be B x Nj x 3, got {v.shape}"
assert v.shape[-1] == 3, f"Vectors {v_id} shape should be B x Nj x 3, got {v.shape}"
B = vec1.shape[0]
Nj = vec1.shape[1]
device = vec1.device
a = vec1 / torch.linalg.norm(vec1, dim=-1, keepdim=True)
b = vec2 / torch.linalg.norm(vec2, dim=-1, keepdim=True)
v = torch.cross(a, b, dim=-1)
# Compute the dot product along the last dimension of a and b
c = torch.sum(a * b, dim=-1)
s = torch.linalg.norm(v, dim=-1) + torch.finfo(float).eps
v0 = torch.zeros_like(v[...,0], device=device).unsqueeze(-1)
kmat_l1 = torch.cat([v0, -v[...,2].unsqueeze(-1), v[...,1].unsqueeze(-1)], dim=-1)
kmat_l2 = torch.cat([v[...,2].unsqueeze(-1), v0, -v[...,0].unsqueeze(-1)], dim=-1)
kmat_l3 = torch.cat([-v[...,1].unsqueeze(-1), v[...,0].unsqueeze(-1), v0], dim=-1)
# Stack the matrix lines along a the -2 dimension
kmat = torch.cat([kmat_l1.unsqueeze(-2), kmat_l2.unsqueeze(-2), kmat_l3.unsqueeze(-2)], dim=-2) # B x Nj x 3 x 3
# import ipdb; ipdb.set_trace()
rotation_matrix = torch.eye(3, device=device).view(1,1,3,3).expand(B, Nj, 3, 3) + kmat + torch.matmul(kmat, kmat) * ((1 - c) / (s ** 2)).view(B, Nj, 1, 1).expand(B, Nj, 3, 3)
return rotation_matrix
def quat_feat(theta):
'''
Computes a normalized quaternion ([0,0,0,0] when the body is in rest pose)
given joint angles
:param theta: A tensor of joints axis angles, batch size x number of joints x 3
:return:
'''
l1norm = torch.norm(theta + 1e-8, p=2, dim=1)
angle = torch.unsqueeze(l1norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_sin * normalized,v_cos-1], dim=1)
return quat
def quat2mat(quat):
'''
Converts a quaternion to a rotation matrix
:param quat:
:return:
'''
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz,
2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx,
2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
return rotMat
def rodrigues(theta):
'''
Computes the rodrigues representation given joint angles
:param theta: batch_size x number of joints x 3
:return: batch_size x number of joints x 3 x 4
'''
l1norm = torch.norm(theta + 1e-8, p = 2, dim = 1)
angle = torch.unsqueeze(l1norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_cos, v_sin * normalized], dim = 1)
return quat2mat(quat)
def with_zeros(input):
'''
Appends a row of [0,0,0,1] to a batch size x 3 x 4 Tensor
:param input: A tensor of dimensions batch size x 3 x 4
:return: A tensor batch size x 4 x 4 (appended with 0,0,0,1)
'''
batch_size = input.shape[0]
row_append = torch.FloatTensor(([0.0, 0.0, 0.0, 1.0])).to(input.device)
row_append.requires_grad = False
padded_tensor = torch.cat([input, row_append.view(1, 1, 4).repeat(batch_size, 1, 1)], 1)
return padded_tensor
def with_zeros_44(input):
'''
Appends a row of [0,0,0,1] to a batch size x 3 x 4 Tensor
:param input: A tensor of dimensions batch size x 3 x 4
:return: A tensor batch size x 4 x 4 (appended with 0,0,0,1)
'''
import ipdb; ipdb.set_trace()
batch_size = input.shape[0]
col_append = torch.FloatTensor(([[[[0.0, 0.0, 0.0]]]])).to(input.device)
padded_tensor = torch.cat([input, col_append], dim=-1)
row_append = torch.FloatTensor(([0.0, 0.0, 0.0, 1.0])).to(input.device)
row_append.requires_grad = False
padded_tensor = torch.cat([input, row_append.view(1, 1, 4).repeat(batch_size, 1, 1)], 1)
return padded_tensor
def vector_to_rot():
def rotation_matrix(A,B):
# Aligns vector A to vector B
ax = A[0]
ay = A[1]
az = A[2]
bx = B[0]
by = B[1]
bz = B[2]
au = A/(torch.sqrt(ax*ax + ay*ay + az*az))
bu = B/(torch.sqrt(bx*bx + by*by + bz*bz))
R=torch.tensor([[bu[0]*au[0], bu[0]*au[1], bu[0]*au[2]], [bu[1]*au[0], bu[1]*au[1], bu[1]*au[2]], [bu[2]*au[0], bu[2]*au[1], bu[2]*au[2]] ])
return(R)
def axis_angle_to_matrix(axis_angle: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as axis/angle to rotation matrices.
Args:
axis_angle: Rotations given as a vector in axis angle form,
as a tensor of shape (..., 3), where the magnitude is
the angle turned anticlockwise in radians around the
vector's direction.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
def axis_angle_to_quaternion(axis_angle: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as axis/angle to quaternions.
Args:
axis_angle: Rotations given as a vector in axis angle form,
as a tensor of shape (..., 3), where the magnitude is
the angle turned anticlockwise in radians around the
vector's direction.
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
half_angles = angles * 0.5
eps = 1e-6
small_angles = angles.abs() < eps
sin_half_angles_over_angles = torch.empty_like(angles)
sin_half_angles_over_angles[~small_angles] = (
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
)
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
# so sin(x/2)/x is about 1/2 - (x*x)/48
sin_half_angles_over_angles[small_angles] = (
0.5 - (angles[small_angles] * angles[small_angles]) / 48
)
quaternions = torch.cat(
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
)
return quaternions
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
r, i, j, k = torch.unbind(quaternions, -1)
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
def axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor:
"""
Return the rotation matrices for one of the rotations about an axis
of which Euler angles describe, for each value of the angle given.
Args:
axis: Axis label "X" or "Y or "Z".
angle: any shape tensor of Euler angles in radians
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
cos = torch.cos(angle)
sin = torch.sin(angle)
one = torch.ones_like(angle)
zero = torch.zeros_like(angle)
if axis == "X":
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
elif axis == "Y":
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
elif axis == "Z":
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
else:
raise ValueError("letter must be either X, Y or Z.")
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
def axis_angle_to_matrix(axis_angle: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as axis/angle to rotation matrices.
Args:
axis_angle: Rotations given as a vector in axis angle form,
as a tensor of shape (..., 3), where the magnitude is
the angle turned anticlockwise in radians around the
vector's direction.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) -> torch.Tensor:
"""
Convert rotations given as Euler angles in radians to rotation matrices.
Args:
euler_angles: Euler angles in radians as tensor of shape (..., 3).
convention: Convention string of three uppercase letters from
{"X", "Y", and "Z"}.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
raise ValueError("Invalid input euler angles.")
if len(convention) != 3:
raise ValueError("Convention must have 3 letters.")
if convention[1] in (convention[0], convention[2]):
raise ValueError(f"Invalid convention {convention}.")
for letter in convention:
if letter not in ("X", "Y", "Z"):
raise ValueError(f"Invalid letter {letter} in convention string.")
matrices = [
_axis_angle_rotation(c, e)
for c, e in zip(convention, torch.unbind(euler_angles, -1))
]
# return functools.reduce(torch.matmul, matrices)
return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2])
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor:
"""
Return the rotation matrices for one of the rotations about an axis
of which Euler angles describe, for each value of the angle given.
Args:
axis: Axis label "X" or "Y or "Z".
angle: any shape tensor of Euler angles in radians
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
cos = torch.cos(angle)
sin = torch.sin(angle)
one = torch.ones_like(angle)
zero = torch.zeros_like(angle)
if axis == "X":
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
elif axis == "Y":
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
elif axis == "Z":
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
else:
raise ValueError("letter must be either X, Y or Z.")
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
def location_to_spheres(loc, color=(1,0,0), radius=0.02):
"""Given an array of 3D points, return a list of spheres located at those positions.
Args:
loc (numpy.array): Nx3 array giving 3D positions
color (tuple, optional): One RGB float color vector to color the spheres. Defaults to (1,0,0).
radius (float, optional): Radius of the spheres in meters. Defaults to 0.02.
Returns:
list: List of spheres Mesh
"""
from psbody.mesh.sphere import Sphere
import numpy as np
cL = [Sphere(np.asarray([loc[i, 0], loc[i, 1], loc[i, 2]]), radius).to_mesh() for i in range(loc.shape[0])]
for spL in cL:
spL.set_vertex_colors(np.array(color))
return cL
def sparce_coo_matrix2tensor(arr_coo, make_dense=True):
assert isinstance(arr_coo, scipy.sparse._coo.coo_matrix), f"arr_coo should be a coo_matrix, got {type(arr_coo)}. Please download the updated SKEL pkl files from https://skel.is.tue.mpg.de/."
values = arr_coo.data
indices = np.vstack((arr_coo.row, arr_coo.col))
i = torch.LongTensor(indices)
v = torch.FloatTensor(values)
shape = arr_coo.shape
tensor_arr = torch.sparse_coo_tensor(i, v, torch.Size(shape))
if make_dense:
tensor_arr = tensor_arr.to_dense()
return tensor_arr