Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# | |
# Copyright (C) 2020 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG), | |
# acting on behalf of its Max Planck Institute for Intelligent Systems and the | |
# Max Planck Institute for Biological Cybernetics. All rights reserved. | |
# | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights | |
# on this computer program. You can only use this computer program if you have closed a license agreement | |
# with MPG or you get the right to use the computer program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and liable to prosecution. | |
# Contact: [email protected] | |
# | |
# | |
# If you use this code in a research publication please consider citing the following: | |
# | |
# STAR: Sparse Trained Articulated Human Body Regressor <https://arxiv.org/pdf/2008.08535.pdf> | |
# | |
# | |
# Code Developed by: | |
# Ahmed A. A. Osman, edited by Marilyn Keller | |
import scipy | |
import torch | |
import numpy as np | |
def build_homog_matrix(R, t=None): | |
""" Create a homogeneous matrix from rotation matrix and translation vector | |
@ R: rotation matrix of shape (B, Nj, 3, 3) | |
@ t: translation vector of shape (B, Nj, 3, 1) | |
returns: homogeneous matrix of shape (B, 4, 4) | |
By Marilyn Keller | |
""" | |
if t is None: | |
B = R.shape[0] | |
Nj = R.shape[1] | |
t = torch.zeros(B, Nj, 3, 1).to(R.device) | |
if R is None: | |
B = t.shape[0] | |
Nj = t.shape[1] | |
R = torch.eye(3).unsqueeze(0).unsqueeze(0).repeat(B, Nj, 1, 1).to(t.device) | |
B = t.shape[0] | |
Nj = t.shape[1] | |
# import ipdb; ipdb.set_trace() | |
assert R.shape == (B, Nj, 3, 3), f"R.shape: {R.shape}" | |
assert t.shape == (B, Nj, 3, 1), f"t.shape: {t.shape}" | |
G = torch.cat([R, t], dim=-1) # BxJx3x4 local transformation matrix | |
pad_row = torch.FloatTensor([0, 0, 0, 1]).to(R.device).view(1, 1, 1, 4).expand(B, Nj, -1, -1) # BxJx1x4 | |
G = torch.cat([G, pad_row], dim=2) # BxJx4x4 padded to be 4x4 matrix an enable multiplication for the kinematic chain | |
return G | |
def matmul_chain(rot_list): | |
R_tot = rot_list[-1] | |
for i in range(len(rot_list)-2,-1,-1): | |
R_tot = torch.matmul(rot_list[i], R_tot) | |
return R_tot | |
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: | |
""" | |
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix | |
using Gram--Schmidt orthogonalization per Section B of [1]. | |
Args: | |
d6: 6D rotation representation, of size (*, 6) | |
Returns: | |
batch of rotation matrices of size (*, 3, 3) | |
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. | |
On the Continuity of Rotation Representations in Neural Networks. | |
IEEE Conference on Computer Vision and Pattern Recognition, 2019. | |
Retrieved from http://arxiv.org/abs/1812.07035 | |
""" | |
import torch.nn.functional as F | |
a1, a2 = d6[..., :3], d6[..., 3:] | |
b1 = F.normalize(a1, dim=-1) | |
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 | |
b2 = F.normalize(b2, dim=-1) | |
b3 = torch.cross(b1, b2, dim=-1) | |
return torch.stack((b1, b2, b3), dim=-2) | |
def rotation_matrix_from_vectors(vec1, vec2): | |
""" Find the rotation matrix that aligns vec1 to vec2 | |
:param vec1: A 3d "source" vector (B x Nj x 3) | |
:param vec2: A 3d "destination" vector (B x Nj x 3) | |
:return mat: A rotation matrix (B x Nj x 3 x 3) which when applied to vec1, aligns it with vec2. | |
""" | |
for v_id, v in enumerate([vec1, vec2]): | |
# vectors shape should be B x Nj x 3 | |
assert len(v.shape) == 3, f"Vectors {v_id} shape should be B x Nj x 3, got {v.shape}" | |
assert v.shape[-1] == 3, f"Vectors {v_id} shape should be B x Nj x 3, got {v.shape}" | |
B = vec1.shape[0] | |
Nj = vec1.shape[1] | |
device = vec1.device | |
a = vec1 / torch.linalg.norm(vec1, dim=-1, keepdim=True) | |
b = vec2 / torch.linalg.norm(vec2, dim=-1, keepdim=True) | |
v = torch.cross(a, b, dim=-1) | |
# Compute the dot product along the last dimension of a and b | |
c = torch.sum(a * b, dim=-1) | |
s = torch.linalg.norm(v, dim=-1) + torch.finfo(float).eps | |
v0 = torch.zeros_like(v[...,0], device=device).unsqueeze(-1) | |
kmat_l1 = torch.cat([v0, -v[...,2].unsqueeze(-1), v[...,1].unsqueeze(-1)], dim=-1) | |
kmat_l2 = torch.cat([v[...,2].unsqueeze(-1), v0, -v[...,0].unsqueeze(-1)], dim=-1) | |
kmat_l3 = torch.cat([-v[...,1].unsqueeze(-1), v[...,0].unsqueeze(-1), v0], dim=-1) | |
# Stack the matrix lines along a the -2 dimension | |
kmat = torch.cat([kmat_l1.unsqueeze(-2), kmat_l2.unsqueeze(-2), kmat_l3.unsqueeze(-2)], dim=-2) # B x Nj x 3 x 3 | |
# import ipdb; ipdb.set_trace() | |
rotation_matrix = torch.eye(3, device=device).view(1,1,3,3).expand(B, Nj, 3, 3) + kmat + torch.matmul(kmat, kmat) * ((1 - c) / (s ** 2)).view(B, Nj, 1, 1).expand(B, Nj, 3, 3) | |
return rotation_matrix | |
def quat_feat(theta): | |
''' | |
Computes a normalized quaternion ([0,0,0,0] when the body is in rest pose) | |
given joint angles | |
:param theta: A tensor of joints axis angles, batch size x number of joints x 3 | |
:return: | |
''' | |
l1norm = torch.norm(theta + 1e-8, p=2, dim=1) | |
angle = torch.unsqueeze(l1norm, -1) | |
normalized = torch.div(theta, angle) | |
angle = angle * 0.5 | |
v_cos = torch.cos(angle) | |
v_sin = torch.sin(angle) | |
quat = torch.cat([v_sin * normalized,v_cos-1], dim=1) | |
return quat | |
def quat2mat(quat): | |
''' | |
Converts a quaternion to a rotation matrix | |
:param quat: | |
:return: | |
''' | |
norm_quat = quat | |
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) | |
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] | |
B = quat.size(0) | |
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) | |
wx, wy, wz = w * x, w * y, w * z | |
xy, xz, yz = x * y, x * z, y * z | |
rotMat = torch.stack([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, | |
2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, | |
2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3) | |
return rotMat | |
def rodrigues(theta): | |
''' | |
Computes the rodrigues representation given joint angles | |
:param theta: batch_size x number of joints x 3 | |
:return: batch_size x number of joints x 3 x 4 | |
''' | |
l1norm = torch.norm(theta + 1e-8, p = 2, dim = 1) | |
angle = torch.unsqueeze(l1norm, -1) | |
normalized = torch.div(theta, angle) | |
angle = angle * 0.5 | |
v_cos = torch.cos(angle) | |
v_sin = torch.sin(angle) | |
quat = torch.cat([v_cos, v_sin * normalized], dim = 1) | |
return quat2mat(quat) | |
def with_zeros(input): | |
''' | |
Appends a row of [0,0,0,1] to a batch size x 3 x 4 Tensor | |
:param input: A tensor of dimensions batch size x 3 x 4 | |
:return: A tensor batch size x 4 x 4 (appended with 0,0,0,1) | |
''' | |
batch_size = input.shape[0] | |
row_append = torch.FloatTensor(([0.0, 0.0, 0.0, 1.0])).to(input.device) | |
row_append.requires_grad = False | |
padded_tensor = torch.cat([input, row_append.view(1, 1, 4).repeat(batch_size, 1, 1)], 1) | |
return padded_tensor | |
def with_zeros_44(input): | |
''' | |
Appends a row of [0,0,0,1] to a batch size x 3 x 4 Tensor | |
:param input: A tensor of dimensions batch size x 3 x 4 | |
:return: A tensor batch size x 4 x 4 (appended with 0,0,0,1) | |
''' | |
import ipdb; ipdb.set_trace() | |
batch_size = input.shape[0] | |
col_append = torch.FloatTensor(([[[[0.0, 0.0, 0.0]]]])).to(input.device) | |
padded_tensor = torch.cat([input, col_append], dim=-1) | |
row_append = torch.FloatTensor(([0.0, 0.0, 0.0, 1.0])).to(input.device) | |
row_append.requires_grad = False | |
padded_tensor = torch.cat([input, row_append.view(1, 1, 4).repeat(batch_size, 1, 1)], 1) | |
return padded_tensor | |
def vector_to_rot(): | |
def rotation_matrix(A,B): | |
# Aligns vector A to vector B | |
ax = A[0] | |
ay = A[1] | |
az = A[2] | |
bx = B[0] | |
by = B[1] | |
bz = B[2] | |
au = A/(torch.sqrt(ax*ax + ay*ay + az*az)) | |
bu = B/(torch.sqrt(bx*bx + by*by + bz*bz)) | |
R=torch.tensor([[bu[0]*au[0], bu[0]*au[1], bu[0]*au[2]], [bu[1]*au[0], bu[1]*au[1], bu[1]*au[2]], [bu[2]*au[0], bu[2]*au[1], bu[2]*au[2]] ]) | |
return(R) | |
def axis_angle_to_matrix(axis_angle: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as axis/angle to rotation matrices. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) | |
def axis_angle_to_quaternion(axis_angle: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as axis/angle to quaternions. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
quaternions with real part first, as tensor of shape (..., 4). | |
""" | |
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) | |
half_angles = angles * 0.5 | |
eps = 1e-6 | |
small_angles = angles.abs() < eps | |
sin_half_angles_over_angles = torch.empty_like(angles) | |
sin_half_angles_over_angles[~small_angles] = ( | |
torch.sin(half_angles[~small_angles]) / angles[~small_angles] | |
) | |
# for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
# so sin(x/2)/x is about 1/2 - (x*x)/48 | |
sin_half_angles_over_angles[small_angles] = ( | |
0.5 - (angles[small_angles] * angles[small_angles]) / 48 | |
) | |
quaternions = torch.cat( | |
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 | |
) | |
return quaternions | |
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as quaternions to rotation matrices. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
r, i, j, k = torch.unbind(quaternions, -1) | |
two_s = 2.0 / (quaternions * quaternions).sum(-1) | |
o = torch.stack( | |
( | |
1 - two_s * (j * j + k * k), | |
two_s * (i * j - k * r), | |
two_s * (i * k + j * r), | |
two_s * (i * j + k * r), | |
1 - two_s * (i * i + k * k), | |
two_s * (j * k - i * r), | |
two_s * (i * k - j * r), | |
two_s * (j * k + i * r), | |
1 - two_s * (i * i + j * j), | |
), | |
-1, | |
) | |
return o.reshape(quaternions.shape[:-1] + (3, 3)) | |
def axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor: | |
""" | |
Return the rotation matrices for one of the rotations about an axis | |
of which Euler angles describe, for each value of the angle given. | |
Args: | |
axis: Axis label "X" or "Y or "Z". | |
angle: any shape tensor of Euler angles in radians | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
cos = torch.cos(angle) | |
sin = torch.sin(angle) | |
one = torch.ones_like(angle) | |
zero = torch.zeros_like(angle) | |
if axis == "X": | |
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) | |
elif axis == "Y": | |
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) | |
elif axis == "Z": | |
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) | |
else: | |
raise ValueError("letter must be either X, Y or Z.") | |
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) | |
def axis_angle_to_matrix(axis_angle: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as axis/angle to rotation matrices. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) | |
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) -> torch.Tensor: | |
""" | |
Convert rotations given as Euler angles in radians to rotation matrices. | |
Args: | |
euler_angles: Euler angles in radians as tensor of shape (..., 3). | |
convention: Convention string of three uppercase letters from | |
{"X", "Y", and "Z"}. | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: | |
raise ValueError("Invalid input euler angles.") | |
if len(convention) != 3: | |
raise ValueError("Convention must have 3 letters.") | |
if convention[1] in (convention[0], convention[2]): | |
raise ValueError(f"Invalid convention {convention}.") | |
for letter in convention: | |
if letter not in ("X", "Y", "Z"): | |
raise ValueError(f"Invalid letter {letter} in convention string.") | |
matrices = [ | |
_axis_angle_rotation(c, e) | |
for c, e in zip(convention, torch.unbind(euler_angles, -1)) | |
] | |
# return functools.reduce(torch.matmul, matrices) | |
return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2]) | |
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor: | |
""" | |
Return the rotation matrices for one of the rotations about an axis | |
of which Euler angles describe, for each value of the angle given. | |
Args: | |
axis: Axis label "X" or "Y or "Z". | |
angle: any shape tensor of Euler angles in radians | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
cos = torch.cos(angle) | |
sin = torch.sin(angle) | |
one = torch.ones_like(angle) | |
zero = torch.zeros_like(angle) | |
if axis == "X": | |
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) | |
elif axis == "Y": | |
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) | |
elif axis == "Z": | |
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) | |
else: | |
raise ValueError("letter must be either X, Y or Z.") | |
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) | |
def location_to_spheres(loc, color=(1,0,0), radius=0.02): | |
"""Given an array of 3D points, return a list of spheres located at those positions. | |
Args: | |
loc (numpy.array): Nx3 array giving 3D positions | |
color (tuple, optional): One RGB float color vector to color the spheres. Defaults to (1,0,0). | |
radius (float, optional): Radius of the spheres in meters. Defaults to 0.02. | |
Returns: | |
list: List of spheres Mesh | |
""" | |
from psbody.mesh.sphere import Sphere | |
import numpy as np | |
cL = [Sphere(np.asarray([loc[i, 0], loc[i, 1], loc[i, 2]]), radius).to_mesh() for i in range(loc.shape[0])] | |
for spL in cL: | |
spL.set_vertex_colors(np.array(color)) | |
return cL | |
def sparce_coo_matrix2tensor(arr_coo, make_dense=True): | |
assert isinstance(arr_coo, scipy.sparse._coo.coo_matrix), f"arr_coo should be a coo_matrix, got {type(arr_coo)}. Please download the updated SKEL pkl files from https://skel.is.tue.mpg.de/." | |
values = arr_coo.data | |
indices = np.vstack((arr_coo.row, arr_coo.col)) | |
i = torch.LongTensor(indices) | |
v = torch.FloatTensor(values) | |
shape = arr_coo.shape | |
tensor_arr = torch.sparse_coo_tensor(i, v, torch.Size(shape)) | |
if make_dense: | |
tensor_arr = tensor_arr.to_dense() | |
return tensor_arr | |