Spaces:
Sleeping
Sleeping
File size: 15,807 Bytes
5ac1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
# -*- coding: utf-8 -*-
#
# Copyright (C) 2020 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG),
# acting on behalf of its Max Planck Institute for Intelligent Systems and the
# Max Planck Institute for Biological Cybernetics. All rights reserved.
#
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is holder of all proprietary rights
# on this computer program. You can only use this computer program if you have closed a license agreement
# with MPG or you get the right to use the computer program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and liable to prosecution.
# Contact: [email protected]
#
#
# If you use this code in a research publication please consider citing the following:
#
# STAR: Sparse Trained Articulated Human Body Regressor <https://arxiv.org/pdf/2008.08535.pdf>
#
#
# Code Developed by:
# Ahmed A. A. Osman, edited by Marilyn Keller
import scipy
import torch
import numpy as np
def build_homog_matrix(R, t=None):
""" Create a homogeneous matrix from rotation matrix and translation vector
@ R: rotation matrix of shape (B, Nj, 3, 3)
@ t: translation vector of shape (B, Nj, 3, 1)
returns: homogeneous matrix of shape (B, 4, 4)
By Marilyn Keller
"""
if t is None:
B = R.shape[0]
Nj = R.shape[1]
t = torch.zeros(B, Nj, 3, 1).to(R.device)
if R is None:
B = t.shape[0]
Nj = t.shape[1]
R = torch.eye(3).unsqueeze(0).unsqueeze(0).repeat(B, Nj, 1, 1).to(t.device)
B = t.shape[0]
Nj = t.shape[1]
# import ipdb; ipdb.set_trace()
assert R.shape == (B, Nj, 3, 3), f"R.shape: {R.shape}"
assert t.shape == (B, Nj, 3, 1), f"t.shape: {t.shape}"
G = torch.cat([R, t], dim=-1) # BxJx3x4 local transformation matrix
pad_row = torch.FloatTensor([0, 0, 0, 1]).to(R.device).view(1, 1, 1, 4).expand(B, Nj, -1, -1) # BxJx1x4
G = torch.cat([G, pad_row], dim=2) # BxJx4x4 padded to be 4x4 matrix an enable multiplication for the kinematic chain
return G
def matmul_chain(rot_list):
R_tot = rot_list[-1]
for i in range(len(rot_list)-2,-1,-1):
R_tot = torch.matmul(rot_list[i], R_tot)
return R_tot
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
"""
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix
using Gram--Schmidt orthogonalization per Section B of [1].
Args:
d6: 6D rotation representation, of size (*, 6)
Returns:
batch of rotation matrices of size (*, 3, 3)
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H.
On the Continuity of Rotation Representations in Neural Networks.
IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Retrieved from http://arxiv.org/abs/1812.07035
"""
import torch.nn.functional as F
a1, a2 = d6[..., :3], d6[..., 3:]
b1 = F.normalize(a1, dim=-1)
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
b2 = F.normalize(b2, dim=-1)
b3 = torch.cross(b1, b2, dim=-1)
return torch.stack((b1, b2, b3), dim=-2)
def rotation_matrix_from_vectors(vec1, vec2):
""" Find the rotation matrix that aligns vec1 to vec2
:param vec1: A 3d "source" vector (B x Nj x 3)
:param vec2: A 3d "destination" vector (B x Nj x 3)
:return mat: A rotation matrix (B x Nj x 3 x 3) which when applied to vec1, aligns it with vec2.
"""
for v_id, v in enumerate([vec1, vec2]):
# vectors shape should be B x Nj x 3
assert len(v.shape) == 3, f"Vectors {v_id} shape should be B x Nj x 3, got {v.shape}"
assert v.shape[-1] == 3, f"Vectors {v_id} shape should be B x Nj x 3, got {v.shape}"
B = vec1.shape[0]
Nj = vec1.shape[1]
device = vec1.device
a = vec1 / torch.linalg.norm(vec1, dim=-1, keepdim=True)
b = vec2 / torch.linalg.norm(vec2, dim=-1, keepdim=True)
v = torch.cross(a, b, dim=-1)
# Compute the dot product along the last dimension of a and b
c = torch.sum(a * b, dim=-1)
s = torch.linalg.norm(v, dim=-1) + torch.finfo(float).eps
v0 = torch.zeros_like(v[...,0], device=device).unsqueeze(-1)
kmat_l1 = torch.cat([v0, -v[...,2].unsqueeze(-1), v[...,1].unsqueeze(-1)], dim=-1)
kmat_l2 = torch.cat([v[...,2].unsqueeze(-1), v0, -v[...,0].unsqueeze(-1)], dim=-1)
kmat_l3 = torch.cat([-v[...,1].unsqueeze(-1), v[...,0].unsqueeze(-1), v0], dim=-1)
# Stack the matrix lines along a the -2 dimension
kmat = torch.cat([kmat_l1.unsqueeze(-2), kmat_l2.unsqueeze(-2), kmat_l3.unsqueeze(-2)], dim=-2) # B x Nj x 3 x 3
# import ipdb; ipdb.set_trace()
rotation_matrix = torch.eye(3, device=device).view(1,1,3,3).expand(B, Nj, 3, 3) + kmat + torch.matmul(kmat, kmat) * ((1 - c) / (s ** 2)).view(B, Nj, 1, 1).expand(B, Nj, 3, 3)
return rotation_matrix
def quat_feat(theta):
'''
Computes a normalized quaternion ([0,0,0,0] when the body is in rest pose)
given joint angles
:param theta: A tensor of joints axis angles, batch size x number of joints x 3
:return:
'''
l1norm = torch.norm(theta + 1e-8, p=2, dim=1)
angle = torch.unsqueeze(l1norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_sin * normalized,v_cos-1], dim=1)
return quat
def quat2mat(quat):
'''
Converts a quaternion to a rotation matrix
:param quat:
:return:
'''
norm_quat = quat
norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True)
w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3]
B = quat.size(0)
w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2)
wx, wy, wz = w * x, w * y, w * z
xy, xz, yz = x * y, x * z, y * z
rotMat = torch.stack([w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz,
2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx,
2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2], dim=1).view(B, 3, 3)
return rotMat
def rodrigues(theta):
'''
Computes the rodrigues representation given joint angles
:param theta: batch_size x number of joints x 3
:return: batch_size x number of joints x 3 x 4
'''
l1norm = torch.norm(theta + 1e-8, p = 2, dim = 1)
angle = torch.unsqueeze(l1norm, -1)
normalized = torch.div(theta, angle)
angle = angle * 0.5
v_cos = torch.cos(angle)
v_sin = torch.sin(angle)
quat = torch.cat([v_cos, v_sin * normalized], dim = 1)
return quat2mat(quat)
def with_zeros(input):
'''
Appends a row of [0,0,0,1] to a batch size x 3 x 4 Tensor
:param input: A tensor of dimensions batch size x 3 x 4
:return: A tensor batch size x 4 x 4 (appended with 0,0,0,1)
'''
batch_size = input.shape[0]
row_append = torch.FloatTensor(([0.0, 0.0, 0.0, 1.0])).to(input.device)
row_append.requires_grad = False
padded_tensor = torch.cat([input, row_append.view(1, 1, 4).repeat(batch_size, 1, 1)], 1)
return padded_tensor
def with_zeros_44(input):
'''
Appends a row of [0,0,0,1] to a batch size x 3 x 4 Tensor
:param input: A tensor of dimensions batch size x 3 x 4
:return: A tensor batch size x 4 x 4 (appended with 0,0,0,1)
'''
import ipdb; ipdb.set_trace()
batch_size = input.shape[0]
col_append = torch.FloatTensor(([[[[0.0, 0.0, 0.0]]]])).to(input.device)
padded_tensor = torch.cat([input, col_append], dim=-1)
row_append = torch.FloatTensor(([0.0, 0.0, 0.0, 1.0])).to(input.device)
row_append.requires_grad = False
padded_tensor = torch.cat([input, row_append.view(1, 1, 4).repeat(batch_size, 1, 1)], 1)
return padded_tensor
def vector_to_rot():
def rotation_matrix(A,B):
# Aligns vector A to vector B
ax = A[0]
ay = A[1]
az = A[2]
bx = B[0]
by = B[1]
bz = B[2]
au = A/(torch.sqrt(ax*ax + ay*ay + az*az))
bu = B/(torch.sqrt(bx*bx + by*by + bz*bz))
R=torch.tensor([[bu[0]*au[0], bu[0]*au[1], bu[0]*au[2]], [bu[1]*au[0], bu[1]*au[1], bu[1]*au[2]], [bu[2]*au[0], bu[2]*au[1], bu[2]*au[2]] ])
return(R)
def axis_angle_to_matrix(axis_angle: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as axis/angle to rotation matrices.
Args:
axis_angle: Rotations given as a vector in axis angle form,
as a tensor of shape (..., 3), where the magnitude is
the angle turned anticlockwise in radians around the
vector's direction.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
def axis_angle_to_quaternion(axis_angle: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as axis/angle to quaternions.
Args:
axis_angle: Rotations given as a vector in axis angle form,
as a tensor of shape (..., 3), where the magnitude is
the angle turned anticlockwise in radians around the
vector's direction.
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
half_angles = angles * 0.5
eps = 1e-6
small_angles = angles.abs() < eps
sin_half_angles_over_angles = torch.empty_like(angles)
sin_half_angles_over_angles[~small_angles] = (
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
)
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
# so sin(x/2)/x is about 1/2 - (x*x)/48
sin_half_angles_over_angles[small_angles] = (
0.5 - (angles[small_angles] * angles[small_angles]) / 48
)
quaternions = torch.cat(
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
)
return quaternions
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
r, i, j, k = torch.unbind(quaternions, -1)
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
def axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor:
"""
Return the rotation matrices for one of the rotations about an axis
of which Euler angles describe, for each value of the angle given.
Args:
axis: Axis label "X" or "Y or "Z".
angle: any shape tensor of Euler angles in radians
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
cos = torch.cos(angle)
sin = torch.sin(angle)
one = torch.ones_like(angle)
zero = torch.zeros_like(angle)
if axis == "X":
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
elif axis == "Y":
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
elif axis == "Z":
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
else:
raise ValueError("letter must be either X, Y or Z.")
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
def axis_angle_to_matrix(axis_angle: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as axis/angle to rotation matrices.
Args:
axis_angle: Rotations given as a vector in axis angle form,
as a tensor of shape (..., 3), where the magnitude is
the angle turned anticlockwise in radians around the
vector's direction.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) -> torch.Tensor:
"""
Convert rotations given as Euler angles in radians to rotation matrices.
Args:
euler_angles: Euler angles in radians as tensor of shape (..., 3).
convention: Convention string of three uppercase letters from
{"X", "Y", and "Z"}.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
raise ValueError("Invalid input euler angles.")
if len(convention) != 3:
raise ValueError("Convention must have 3 letters.")
if convention[1] in (convention[0], convention[2]):
raise ValueError(f"Invalid convention {convention}.")
for letter in convention:
if letter not in ("X", "Y", "Z"):
raise ValueError(f"Invalid letter {letter} in convention string.")
matrices = [
_axis_angle_rotation(c, e)
for c, e in zip(convention, torch.unbind(euler_angles, -1))
]
# return functools.reduce(torch.matmul, matrices)
return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2])
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor:
"""
Return the rotation matrices for one of the rotations about an axis
of which Euler angles describe, for each value of the angle given.
Args:
axis: Axis label "X" or "Y or "Z".
angle: any shape tensor of Euler angles in radians
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
cos = torch.cos(angle)
sin = torch.sin(angle)
one = torch.ones_like(angle)
zero = torch.zeros_like(angle)
if axis == "X":
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
elif axis == "Y":
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
elif axis == "Z":
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
else:
raise ValueError("letter must be either X, Y or Z.")
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
def location_to_spheres(loc, color=(1,0,0), radius=0.02):
"""Given an array of 3D points, return a list of spheres located at those positions.
Args:
loc (numpy.array): Nx3 array giving 3D positions
color (tuple, optional): One RGB float color vector to color the spheres. Defaults to (1,0,0).
radius (float, optional): Radius of the spheres in meters. Defaults to 0.02.
Returns:
list: List of spheres Mesh
"""
from psbody.mesh.sphere import Sphere
import numpy as np
cL = [Sphere(np.asarray([loc[i, 0], loc[i, 1], loc[i, 2]]), radius).to_mesh() for i in range(loc.shape[0])]
for spL in cL:
spL.set_vertex_colors(np.array(color))
return cL
def sparce_coo_matrix2tensor(arr_coo, make_dense=True):
assert isinstance(arr_coo, scipy.sparse._coo.coo_matrix), f"arr_coo should be a coo_matrix, got {type(arr_coo)}. Please download the updated SKEL pkl files from https://skel.is.tue.mpg.de/."
values = arr_coo.data
indices = np.vstack((arr_coo.row, arr_coo.col))
i = torch.LongTensor(indices)
v = torch.FloatTensor(values)
shape = arr_coo.shape
tensor_arr = torch.sparse_coo_tensor(i, v, torch.Size(shape))
if make_dense:
tensor_arr = tensor_arr.to_dense()
return tensor_arr
|