File size: 29,343 Bytes
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb68d0
 
 
 
 
 
f2789f8
 
3cb68d0
 
f2789f8
3cb68d0
f2789f8
 
 
 
 
 
 
 
 
 
 
3cb68d0
f2789f8
 
 
 
 
 
 
 
3cb68d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2789f8
 
 
 
 
3cb68d0
3824258
 
 
 
 
 
 
 
f2789f8
 
3cb68d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2789f8
 
 
 
 
 
 
 
3cb68d0
 
 
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb68d0
f2789f8
3cb68d0
f2789f8
 
 
 
 
 
 
 
 
3fd0696
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c621d2
 
 
 
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb68d0
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb68d0
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3824258
f2789f8
3e83ec5
 
 
 
f2789f8
 
dee760c
3cb68d0
dee760c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb68d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dee760c
3cb68d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9873c68
 
 
3cb68d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9873c68
3cb68d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86ae79c
9873c68
9c621d2
 
 
 
 
 
 
 
9873c68
 
 
 
9c621d2
9873c68
3cb68d0
9873c68
 
3cb68d0
9873c68
 
 
 
3cb68d0
 
 
 
 
 
 
 
 
 
9873c68
 
 
 
 
 
 
 
 
9c621d2
9873c68
9c621d2
 
9873c68
9c621d2
 
 
3cb68d0
 
9873c68
 
 
 
 
3cb68d0
9c621d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb68d0
 
9c621d2
3cb68d0
 
 
3824258
dee760c
 
 
 
 
 
 
 
 
 
 
 
f2789f8
8889d78
 
f2789f8
 
9c621d2
f2789f8
 
3824258
 
 
 
 
f2789f8
3cb68d0
 
 
8889d78
3cb68d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86ae79c
448dc2f
86ae79c
448dc2f
86ae79c
 
 
 
 
 
 
 
8889d78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb68d0
 
 
 
3824258
f2789f8
 
 
 
 
 
3cb68d0
f2789f8
 
 
 
3cb68d0
f2789f8
 
 
 
 
 
 
 
 
 
 
3cb68d0
f2789f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb68d0
f2789f8
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
import streamlit as st
import yfinance as yf
import alpaca_trade_api as alpaca
from newsapi import NewsApiClient
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
from datetime import datetime, timedelta
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import logging
import threading
import time
import json
import os
import plotly.graph_objs as go
from sklearn.preprocessing import minmax_scale
from plotly.subplots import make_subplots

# Configure logging with timestamps
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s - %(levelname)s - %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S"
)
logger = logging.getLogger(__name__)

# Use session state keys instead of file paths
AUTO_TRADE_LOG_KEY = "auto_trade_log"  # Session state key for trade log
AUTO_TRADE_INTERVAL = 10800  # Interval in seconds (e.g., 10800 seconds = 3 hours)
st.set_page_config(layout="wide")

class AlpacaTrader:
    def __init__(self, API_KEY, API_SECRET, BASE_URL):
        self.alpaca = alpaca.REST(API_KEY, API_SECRET, BASE_URL)
        self.cash = 0
        self.holdings = {}
        self.trades = []

    def get_market_status(self):
        return self.alpaca.get_clock().is_open

    def buy(self, symbol, qty, reason=None):
        try:
            # Ensure at least $1000 in cash before buying
            account = self.alpaca.get_account()
            cash_balance = float(account.cash)
            if cash_balance < 1000:
                logger.warning(f"Low cash: (${cash_balance}) to buy {symbol}. Minimum $1000 required.")
                return None
            order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='buy', type='market', time_in_force='day')
            if reason:
                logger.info(f"Bought {qty} shares of {symbol} [Reason: {reason}]")
            else:
                logger.info(f"Bought {qty} shares of {symbol}")
            
            # Record the trade
            if order:
                self.trades.append({
                    'symbol': symbol, 
                    'qty': qty, 
                    'action': 'Buy', 
                    'time': datetime.now(),
                    'reason': reason
                })
            
            return order
        except Exception as e:
            logger.error(f"Error buying {symbol}: {e}")
            return None

    def sell(self, symbol, qty, reason=None):
        # Check if position exists and has enough quantity before attempting to sell
        positions = {p.symbol: float(p.qty) for p in self.alpaca.list_positions()}
        if symbol not in positions:
            logger.warning(f"No position in {symbol}. Sell not attempted.")
            return None
        if positions[symbol] < qty:
            logger.warning(f"Not enough shares to sell: {qty} requested, {positions[symbol]} available for {symbol}. Sell not attempted.")
            return None
        try:
            order = self.alpaca.submit_order(symbol=symbol, qty=qty, side='sell', type='market', time_in_force='day')
            if reason:
                logger.info(f"Sold {qty} shares of {symbol} [Reason: {reason}]")
            else:
                logger.info(f"Sold {qty} shares of {symbol}")
            
            # Record the trade
            if order:
                self.trades.append({
                    'symbol': symbol, 
                    'qty': qty, 
                    'action': 'Sell', 
                    'time': datetime.now(),
                    'reason': reason
                })
            
            return order
        except Exception as e:
            logger.error(f"Error selling {symbol}: {e}")
            return None

    def getHoldings(self):
        positions = self.alpaca.list_positions()
        for position in positions:
            self.holdings[position.symbol] = float(position.market_value)
        
        # Return holdings as a dictionary for internal use
        return self.holdings

    def getCash(self):
        return self.alpaca.get_account().cash

    def update_portfolio(self, symbol, price, qty, action):
        if action == 'buy':
            self.cash -= price * qty
            if symbol in self.holdings:
                self.holdings[symbol] += price * qty
            else:
                self.holdings[symbol] = price * qty
        elif action == 'sell':
            self.cash += price * qty
            self.holdings[symbol] -= price * qty
            if self.holdings[symbol] <= 0:
                del self.holdings[symbol]
        self.trades.append({'symbol': symbol, 'price': price, 'qty': qty, 'action': action, 'time': datetime.now()})

class NewsSentiment:
    def __init__(self, API_KEY):
        '''
        Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
        '''
        self.newsapi = NewsApiClient(api_key=API_KEY)
        self.sia = SentimentIntensityAnalyzer()


    def get_news_sentiment(self, symbols):
        '''
        The News API has a rate limit of 100 requests per day for free accounts. If you exceed this limit, you'll get a rateLimited error. Example error message:
        ERROR:__main__:Error getting news for APLD: {'status': 'error', 'code': 'rateLimited', 'message': 'You have made too many requests recently. Developer accounts are limited to 100 requests over a 24 hour period (50 requests available every 12 hours). Please upgrade to a paid plan if you need more requests.'}
        
        '''
        sentiment = {}
        for symbol in symbols:
            try:
                articles = self.newsapi.get_everything(q=symbol,
                                                       language='en',
                                                       sort_by='publishedAt',  # <-- fixed argument name
                                                       page=1)
                compound_score = 0
                for article in articles['articles'][:5]:  # Check first 5 articles
                    # print(f'article= {article}')
                    score = self.sia.polarity_scores(article['title'])['compound']
                    compound_score += score
                avg_score = compound_score / 5 if articles['articles'] else 0
                if avg_score > 0.1:
                    sentiment[symbol] = 'Positive'
                elif avg_score < -0.1:
                    sentiment[symbol] = 'Negative'
                else:
                    sentiment[symbol] = 'Neutral'
            except Exception as e:
                logger.error(f"Error getting news for {symbol}: {e}")
                sentiment[symbol] = 'Neutral'
        return sentiment




class StockAnalyzer:
    def __init__(self, alpaca):
        self.alpaca = alpaca
        self.symbols = self.get_top_volume_stocks()
        # Build a symbol->name mapping for use in plots/tables
        self.symbol_to_name = self.get_symbol_to_name()

    def get_symbol_to_name(self):
        # Get mapping from symbol to company name using Alpaca asset info
        assets = self.alpaca.alpaca.list_assets(status='active')
        return {asset.symbol: asset.name for asset in assets}

    def get_bars(self, alp_api, symbols, timeframe='1D'):
        bars_data = {}
        try:
            bars = alp_api.get_bars(list(symbols), timeframe).df
            if 'symbol' not in bars.columns:
                logger.warning("The 'symbol' column is missing in the bars DataFrame.")
                return {symbol: {'bar_data': None} for symbol in symbols}

            for symbol in symbols:
                symbol_bars = bars[bars['symbol'] == symbol]
                if not symbol_bars.empty:
                    bar_info = symbol_bars.iloc[-1]
                    # Handle index type for timestamp
                    if isinstance(bar_info.name, tuple):
                        timestamp = bar_info.name[1].isoformat()
                    else:
                        timestamp = bar_info.name.isoformat()
                    bars_data[symbol] = {
                        'bar_data': {
                            'volume': bar_info['volume'],
                            'open': bar_info['open'],
                            'high': bar_info['high'],
                            'low': bar_info['low'],
                            'close': bar_info['close'],
                            'timestamp': timestamp
                        }
                    }
                else:
                    logger.debug(f"No bar data for symbol: {symbol}")
                    bars_data[symbol] = {'bar_data': None}
        except Exception as e:
            logger.warning(f"Error fetching bars in batch: {e}")
            for symbol in symbols:
                bars_data[symbol] = {'bar_data': None}
        return bars_data

    def assetswithconditions(self,stock_assets):
        cond = {
            'class': ['us_equity'],
            'exchange': ['NASDAQ', 'NYSE'],
            'status': ['active'],
            'tradable': [True],
            'marginable': [True],
            'shortable': [True],
            'easy_to_borrow': [True],
            'fractionable': [True]
        }
        assets_with_conditions = []
        asset_symbol_dict = {}
        
        for asset in stock_assets:
            # Skip symbols with '.' or '/' (preferred shares, warrants, etc.)
            if '.' in asset.symbol or '/' in asset.symbol:
                continue

            if (asset.__getattr__('class') in cond['class'] and 
                asset.exchange in cond['exchange'] and
                asset.status in cond['status'] and
                asset.tradable in cond['tradable'] and
                asset.marginable in cond['marginable'] and
                asset.shortable in cond['shortable'] and 
                asset.easy_to_borrow in cond['easy_to_borrow'] and
                asset.fractionable in cond['fractionable']
                ):
                assets_with_conditions.append(asset)
                
                asset_no_comma = asset.name.replace(',', '')
                asset_first_word = asset_no_comma.split()[0]

                asset_symbol_dict[asset.symbol] = asset._raw
                asset_symbol_dict[asset.symbol]['firstWord'] = asset_first_word
                
                sorted_dict = dict(sorted(asset_symbol_dict.items()))
        # print(f'Length of Alpaca assets with conditions = {len(assets_with_conditions)}')
        # print(f'assets_with_conditions = {assets_with_conditions}')
        return assets_with_conditions, sorted_dict


    def get_top_volume_stocks(self,num_stocks=10):
        try:
            # Get all tradable assets
            assets = self.alpaca.alpaca.list_assets(status='active')
            # tradable_assets = {asset.symbol: {} for asset in assets if asset.tradable}
            # print(f'tradable_assets = {tradable_assets}')

            assets_with_conditions, sorted_dict = self.assetswithconditions(assets)
            # print(f'sorted_dict = {sorted_dict}')
            # Fetch bar data for all tradable assets
            # print(f'sorted_dict.keys()={sorted_dict.keys()}')
            tradable_assets = self.get_bars(self.alpaca.alpaca, sorted_dict.keys(), timeframe='1D')

            # Extract volume and calculate the top 10 stocks by volume
            volume_data = {
                symbol: info['bar_data']['volume']
                for symbol, info in tradable_assets.items()
                if info['bar_data'] is not None
            }
            top_volume_stocks = sorted(volume_data, key=volume_data.get, reverse=True)[:num_stocks]
            logger.info(f'top_volume_stocks = {top_volume_stocks}')

            return top_volume_stocks
        except Exception as e:
            logger.error(f"Error fetching top volume stocks: {e}")
            return []

    def get_historical_data(self, symbols):
        data = {}
        for symbol in symbols:
            try:
                # Pull historical data from 2000-01-01 to today, daily interval
                ticker = yf.Ticker(symbol)
                hist = ticker.history(start='2023-01-01', end=datetime.now().strftime('%Y-%m-%d'), interval='1d')
                data[symbol] = hist
            except Exception as e:
                logger.error(f"Error getting data for {symbol}: {e}")
        return data

class TradingApp:
    def __init__(self):
        self.alpaca = AlpacaTrader(st.secrets['ALPACA_API_KEY'], st.secrets['ALPACA_SECRET_KEY'], 'https://paper-api.alpaca.markets')
        self.sentiment = NewsSentiment(st.secrets['NEWS_API_KEY'])
        self.analyzer = StockAnalyzer(self.alpaca)
        self.data = self.analyzer.get_historical_data(self.analyzer.symbols)
        self.auto_trade_log = []  # Store automatic trade actions

    def display_charts(self):
        # Dynamically adjust columns based on number of stocks and available width
        symbols = list(self.data.keys())
        if not symbols:
            st.warning("No stock data available to display charts.")
            return  # Exit the function if no symbols are available

        symbol_to_name = self.analyzer.symbol_to_name
        n = len(symbols)
        # Calculate columns based on n for best fit
        cols = 3
        rows = (n + cols - 1) // cols
        subplot_titles = [
            f"{symbol} - {symbol_to_name.get(symbol, '')}" for symbol in symbols
        ]
        fig = make_subplots(rows=rows, cols=cols, subplot_titles=subplot_titles)
        for idx, symbol in enumerate(symbols):
            df = self.data[symbol]
            if not df.empty:
                row = idx // cols + 1
                col = idx % cols + 1
                fig.add_trace(
                    go.Scatter(
                        x=df.index,
                        y=df['Close'],
                        mode='lines',
                        name=symbol,
                        hovertemplate=f"%{{x}}<br>{symbol}: %{{y:.2f}}<extra></extra>"
                    ),
                    row=row,
                    col=col
                )
        fig.update_layout(
            title="Top Volume Stocks - Price Charts (Since 2023)",
            height=max(400 * rows, 600),
            showlegend=False,
            dragmode=False,
        )
        # Enable scroll-zoom for each subplot (individual zoom)
        fig.update_layout(
            xaxis=dict(fixedrange=False),
            yaxis=dict(fixedrange=False),
        )
        for i in range(1, rows * cols + 1):
            fig.layout[f'xaxis{i}'].update(fixedrange=False)
            fig.layout[f'yaxis{i}'].update(fixedrange=False)
        st.plotly_chart(fig, use_container_width=True, config={"scrollZoom": True})

    def manual_trade(self):
        # Move all user inputs to the sidebar
        with st.sidebar:
            st.header("Manual Trade")
            symbol = st.text_input('Enter stock symbol')

            # Fetch the current stock price dynamically using Alpaca's API
            def get_stock_price(symbol):
                try:
                    if not symbol:
                        return None
                    last_trade = self.alpaca.alpaca.get_latest_trade(symbol)
                    return last_trade.price
                except Exception as e:
                    logger.error(f"Error fetching stock price for {symbol}: {e}")
                    return None

            # Update stock price when a new symbol is entered
            if symbol:
                if "stock_price" not in st.session_state or st.session_state.get("last_symbol") != symbol:
                    st.session_state["stock_price"] = get_stock_price(symbol)
                    st.session_state["last_symbol"] = symbol

            stock_price = st.session_state.get("stock_price")
            # Explicitly display the stock price below the input field
            if stock_price is not None:
                st.write(f"Current stock price for {symbol.upper()}: ${stock_price:,.2f}")
            else:
                st.write("Enter a valid stock symbol to see the price.")

            # Allow user to enter either quantity or amount
            trade_option = st.radio("Trade Option", ["Enter Quantity", "Enter Amount"])
            qty = st.number_input('Enter quantity', min_value=0.0, step=0.01, value=0.0) if trade_option == "Enter Quantity" else None
            amount = st.number_input('Enter amount ($)', min_value=0.0, step=0.01, value=0.0) if trade_option == "Enter Amount" else None

            # Dynamically calculate the other field
            if stock_price:
                if trade_option == "Enter Quantity" and qty:
                    amount = qty * stock_price
                    st.write(f"Calculated Amount: ${amount:,.2f}")
                elif trade_option == "Enter Amount" and amount:
                    qty = float(amount / stock_price)
                    st.write(f"Calculated Quantity: {qty:,.2f}")

            action = st.selectbox('Action', ['Buy', 'Sell'])
            if st.button('Execute'):
                if stock_price and qty:
                    is_market_open = self.alpaca.get_market_status()
                    if action == 'Buy':
                        order = self.alpaca.buy(symbol, qty, reason="Manual Trade")
                    else:
                        order = self.alpaca.sell(symbol, qty, reason="Manual Trade")
                    
                    if order:
                        if not is_market_open:
                            _, _, next_open, _ = get_market_times(self.alpaca.alpaca)
                            next_open_time = next_open.strftime('%Y-%m-%d %H:%M:%S') if next_open else "unknown"
                            st.warning(f"Market is currently closed. The {action.lower()} order for {qty} shares of {symbol} has been submitted and will execute when the market opens at {next_open_time}.")
                        else:
                            st.success(f"Order executed: {action} {qty} shares of {symbol}")
                    else:
                        st.error("Order failed")
                else:
                    st.error("Please enter a valid stock symbol and trade details.")

            # Display portfolio information in the sidebar
            st.header("Alpaca Cash Portfolio")

            def refresh_portfolio():
                account = self.alpaca.alpaca.get_account()
                portfolio_data = {
                    "Metric": ["Cash Balance", "Buying Power", "Equity", "Portfolio Value"],
                    "Value": [
                        f"${int(float(account.cash)):,.0f}",
                        f"${int(float(account.buying_power)):,.0f}",
                        f"${int(float(account.equity)):,.0f}",
                        f"${int(float(account.portfolio_value)):,.0f}"
                    ]
                }
                df = pd.DataFrame(portfolio_data)
                st.table(df.to_dict(orient="records"))  # Convert DataFrame to a list of dictionaries

            refresh_portfolio()
            st.button("Refresh Portfolio", on_click=refresh_portfolio)

    def auto_trade_based_on_sentiment(self, sentiment):
        """Execute trades based on sentiment analysis and return actions taken."""
        actions = self._execute_sentiment_trades(sentiment)
        self.auto_trade_log = actions
        return actions

    def _execute_sentiment_trades(self, sentiment):
        """Helper method to execute trades based on sentiment.
        Used by both auto_trade_based_on_sentiment and background_auto_trade."""
        actions = []
        symbol_to_name = self.analyzer.symbol_to_name
        for symbol, sentiment_value in sentiment.items():
            action = None
            is_market_open = self.alpaca.get_market_status()
            if sentiment_value == 'Positive':
                order = self.alpaca.buy(symbol, 1, reason="Sentiment: Positive")
                action = 'Buy'
            elif sentiment_value == 'Negative':
                order = self.alpaca.sell(symbol, 1, reason="Sentiment: Negative")
                action = 'Sell'
            else:
                order = None
                action = 'Hold'
                logger.info(f"Held {symbol}")

            if order:
                if not is_market_open:
                    _, _, next_open, _ = get_market_times(self.alpaca.alpaca)
                    next_open_time = next_open.strftime('%Y-%m-%d %H:%M:%S') if next_open else "unknown"
                    logger.warning(f"Market is currently closed. The {action.lower()} order for 1 share of {symbol} has been submitted and will execute when the market opens at {next_open_time}.")
                else:
                    logger.info(f"Order executed: {action} 1 share of {symbol}")

            actions.append({
                'symbol': symbol,
                'company_name': symbol_to_name.get(symbol, ''),
                'sentiment': sentiment_value,
                'action': action
            })
        return actions

def background_auto_trade(app):
    """This function runs in a background thread and updates session state with automatic trades."""
    while True:
        start_time = time.time()  # Record the start time of the iteration
        
        sentiment = app.sentiment.get_news_sentiment(app.analyzer.symbols)
        
        # Use the shared method to execute trades
        actions = app._execute_sentiment_trades(sentiment)
        
        # Create log entry
        log_entry = {
            "timestamp": datetime.now().isoformat(),
            "actions": actions,
            "sentiment": sentiment
        }
        
        # Update session state - ensure the UI reflects the latest data
        if AUTO_TRADE_LOG_KEY not in st.session_state:
            st.session_state[AUTO_TRADE_LOG_KEY] = []
        
        st.session_state[AUTO_TRADE_LOG_KEY].append(log_entry)
        
        # Limit size to avoid memory issues (keep last 50 entries)
        if len(st.session_state[AUTO_TRADE_LOG_KEY]) > 50:
            st.session_state[AUTO_TRADE_LOG_KEY] = st.session_state[AUTO_TRADE_LOG_KEY][-50:]
        
        # Log the update
        logger.info(f"Auto-trade completed. Actions: {actions}")
        
        # Calculate the time taken for this iteration
        elapsed_time = time.time() - start_time
        sleep_time = max(0, AUTO_TRADE_INTERVAL - elapsed_time)  # Ensure non-negative sleep time
        
        logger.info(f"Sleeping for {sleep_time:.2f} seconds before the next auto-trade.")
        time.sleep(sleep_time)

def get_auto_trade_log():
    """Get the auto trade log from session state."""
    if AUTO_TRADE_LOG_KEY not in st.session_state:
        st.session_state[AUTO_TRADE_LOG_KEY] = []
    return st.session_state[AUTO_TRADE_LOG_KEY]

def get_market_times(alpaca_api):
    try:
        clock = alpaca_api.get_clock()
        is_open = clock.is_open
        now = pd.Timestamp(clock.timestamp).tz_convert('America/New_York')
        next_close = pd.Timestamp(clock.next_close).tz_convert('America/New_York')
        next_open = pd.Timestamp(clock.next_open).tz_convert('America/New_York')
        return is_open, now, next_open, next_close
    except Exception as e:
        logger.error(f"Error fetching market times: {e}")
        return None, None, None, None

def main():
    st.title("Ben's Stock Trading Application")
    st.markdown("This is a fun stock trading application that uses Alpaca API for trading and News API for sentiment analysis. Come and trade my money! Well, it's a paper account, so it's not real money. But still, have fun!")

    if not st.secrets['ALPACA_API_KEY'] or not st.secrets['NEWS_API_KEY']:
        st.error("Please configure your ALPACA_API_KEY and NEWS_API_KEY")
        return

    # Prevent Streamlit from rerunning the script on every widget interaction
    # Use session state to persist objects and only update when necessary
    if "app_instance" not in st.session_state:
        st.session_state["app_instance"] = TradingApp()
    app = st.session_state["app_instance"]

    # Create two columns for market status and portfolio holdings
    col1, col2 = st.columns([1, 1])

    # Column 1: Portfolio holdings bar chart
    with col1:
        st.subheader("Portfolio Holdings")
        holdings_container = st.empty()  # Create a container for dynamic updates
        def update_holdings():
            holdings = app.alpaca.getHoldings()
            if holdings:
                df = pd.DataFrame(list(holdings.items()), columns=['Ticker', 'Market Value'])
                fig = go.Figure(
                    data=[
                        go.Bar(
                            x=df['Ticker'],
                            y=df['Market Value'],
                            marker=dict(color=df['Market Value'], colorscale='Viridis'),
                        )
                    ]
                )
                fig.update_layout(
                    xaxis_title="Ticker",
                    yaxis_title="$ USD",
                    height=400,
                )
                # Use a unique key by appending the current timestamp
                holdings_container.plotly_chart(fig, use_container_width=True, key=f"portfolio_holdings_chart_{time.time()}")
            else:
                holdings_container.info("No holdings to display.")

        # Periodically refresh the holdings plot
        update_holdings()
        st.button("Refresh Holdings", on_click=update_holdings)

        # Add an expandable section for detailed holdings
        st.subheader("Detailed Holdings")
        with st.expander("View Detailed Holdings"):
            holdings = app.alpaca.getHoldings()  # Use self.alpaca instead of app.alpaca
            if holdings:
                detailed_holdings = pd.DataFrame(
                    [{"Ticker": ticker, "Amount (USD)": round(value)} for ticker, value in holdings.items()]
                )
                st.table(detailed_holdings)
            else:
                st.info("No holdings to display.")

    # Column 2: Market status
    with col2:
        is_open, now, next_open, next_close = get_market_times(app.alpaca.alpaca)
        market_status = "🟒 Market is OPEN" if is_open else "πŸ”΄ Market is CLOSED"
        st.markdown(f"### {market_status}")
        if now is not None:
            st.markdown(f"**Current time (ET):** {now.strftime('%Y-%m-%d %H:%M:%S')}")
        if is_open and next_close is not None:
            st.markdown(f"**Market closes at:** {next_close.strftime('%Y-%m-%d %H:%M:%S')} ET")
            seconds_left = int((next_close - now).total_seconds())
            st.markdown(f"**Time until close:** {pd.to_timedelta(seconds_left, unit='s')}")
        elif not is_open and next_open is not None:
            st.markdown(f"**Market opens at:** {next_open.strftime('%Y-%m-%d %H:%M:%S')} ET")
            seconds_left = int((next_open - now).total_seconds())
            st.markdown(f"**Time until open:** {pd.to_timedelta(seconds_left, unit='s')}")


    # Initialize auto trade log in session state if needed
    if AUTO_TRADE_LOG_KEY not in st.session_state:
        st.session_state[AUTO_TRADE_LOG_KEY] = []

    # Only start the background thread once
    if "auto_trade_thread_started" not in st.session_state:
        thread = threading.Thread(target=background_auto_trade, args=(app,), daemon=True)
        thread.start()
        st.session_state["auto_trade_thread_started"] = True

    # Main area: plots and data
    app.manual_trade()
    app.display_charts()

    # Read and display latest auto-trade actions
    st.write("Automatic Trading Actions Based on Sentiment (background):")
    auto_trade_log = get_auto_trade_log()
    if auto_trade_log:
        # Show the most recent entry
        last_entry = auto_trade_log[-1]
        st.write(f"Last checked: {last_entry['timestamp']}")
        df = pd.DataFrame(last_entry["actions"])
        if "company_name" in df.columns:
            df = df[["symbol", "company_name", "sentiment", "action"]]
        st.dataframe(df)
        st.write("Sentiment Analysis (latest):")
        st.write(last_entry["sentiment"])

        # Plot buy/sell actions over time
        st.write("Auto-Trading History (Buy/Sell Actions Over Time):")
        history = []
        for entry in auto_trade_log:
            ts = entry["timestamp"]
            for act in entry["actions"]:
                if act["action"] in ("Buy", "Sell"):
                    history.append({
                        "timestamp": ts,
                        "symbol": act["symbol"],
                        "action": act["action"]
                    })
        if history:
            hist_df = pd.DataFrame(history)
            if not hist_df.empty:
                hist_df["timestamp"] = pd.to_datetime(hist_df["timestamp"])
                hist_df["action_value"] = hist_df["action"].replace({"Buy": 1, "Sell": -1}).astype(float)
                pivot = hist_df.pivot_table(index="timestamp", columns="symbol", values="action_value", aggfunc="sum")
                st.line_chart(pivot.fillna(0))
    else:
        st.info("Waiting for first background auto-trade run...")


if __name__ == "__main__":
    main()