IncreasingLoss's picture
Update app.py
f560c02 verified
import torch
import gradio as gr
import torch.nn as nn
import torch.nn.functional as F
import os
from pathlib import Path
from torch.nn import init
import torchvision.transforms as transforms
from PIL import Image
# MobileNetV3 Model Definition (keep this exactly as in your original code)
class hswish(nn.Module):
def forward(self, x):
return x * F.relu6(x + 3) / 6
class hsigmoid(nn.Module):
def forward(self, x):
return F.relu6(x + 3) / 6
class SeModule(nn.Module):
def __init__(self, in_size, reduction=4):
super().__init__()
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_size, in_size//reduction, 1, bias=False),
nn.BatchNorm2d(in_size//reduction),
nn.ReLU(inplace=True),
nn.Conv2d(in_size//reduction, in_size, 1, bias=False),
nn.BatchNorm2d(in_size),
hsigmoid()
)
def forward(self, x):
return x * self.se(x)
class Block(nn.Module):
def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride):
super().__init__()
self.stride = stride
self.se = semodule
self.conv1 = nn.Conv2d(in_size, expand_size, 1, 1, 0, bias=False)
self.bn1 = nn.BatchNorm2d(expand_size)
self.nolinear1 = nolinear
self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size, stride, kernel_size//2, groups=expand_size, bias=False)
self.bn2 = nn.BatchNorm2d(expand_size)
self.nolinear2 = nolinear
self.conv3 = nn.Conv2d(expand_size, out_size, 1, 1, 0, bias=False)
self.bn3 = nn.BatchNorm2d(out_size)
self.shortcut = nn.Sequential()
if stride == 1 and in_size != out_size:
self.shortcut = nn.Sequential(
nn.Conv2d(in_size, out_size, 1, 1, 0, bias=False),
nn.BatchNorm2d(out_size),
)
def forward(self, x):
out = self.nolinear1(self.bn1(self.conv1(x)))
out = self.nolinear2(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
if self.se: out = self.se(out)
return out + self.shortcut(x) if self.stride==1 else out
class MobileNetV3_Small(nn.Module):
def __init__(self, num_classes=30):
super().__init__()
self.conv1 = nn.Conv2d(3, 16, 3, 2, 1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.hs1 = hswish()
self.bneck = nn.Sequential(
Block(3, 16, 16, 16, nn.ReLU(), SeModule(16), 2),
Block(3, 16, 72, 24, nn.ReLU(), None, 2),
Block(3, 24, 88, 24, nn.ReLU(), None, 1),
Block(5, 24, 96, 40, hswish(), SeModule(40), 2),
Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
Block(5, 40, 120, 48, hswish(), SeModule(48), 1),
Block(5, 48, 144, 48, hswish(), SeModule(48), 1),
Block(5, 48, 288, 96, hswish(), SeModule(96), 2),
Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
)
self.conv2 = nn.Conv2d(96, 576, 1, 1, 0, bias=False)
self.bn2 = nn.BatchNorm2d(576)
self.hs2 = hswish()
self.linear3 = nn.Linear(576, 1280)
self.bn3 = nn.BatchNorm1d(1280)
self.hs3 = hswish()
self.linear4 = nn.Linear(1280, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None: init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None: init.constant_(m.bias, 0)
def forward(self, x):
x = self.hs1(self.bn1(self.conv1(x)))
x = self.bneck(x)
x = self.hs2(self.bn2(self.conv2(x)))
x = F.avg_pool2d(x, x.size()[2:])
x = x.view(x.size(0), -1)
x = self.hs3(self.bn3(self.linear3(x)))
return self.linear4(x)
# Initialize Model
model = MobileNetV3_Small().cpu()
model.load_state_dict(torch.load("MobileNet3_small_StateDictionary.pth", map_location='cpu'))
model.eval()
css = """
.centered-examples {
margin: 0 auto !important;
justify-content: center !important;
gap: 8px !important;
min-height: 150px !important; /* Added minimum height */
}
.centered-examples .thumb {
height: 100px !important;
width: 100px !important;
object-fit: cover !important;
margin: 5px !important; /* Added margin between thumbs */
}
/* 1) Global override: remove any forced sizing on .fixed-height anywhere */
.fixed-height.svelte-842rpi.svelte-842rpi {
min-height: 0 !important; /* cancel the global min-height */
max-height: none !important; /* cancel the global max-height */
height: auto !important; /* allow auto height */
}
/* 2) Same-query override: mirror Gradio’s media query exactly */
@media (min-width: 1280px) {
/* target the exact same class chain inside the breakpoint */
.fixed-height.svelte-842rpi.svelte-842rpi {
min-height: 0 !important; /* zero-out the 55vh/min-height there */
max-height: none !important; /* remove the viewport-height cap */
height: auto !important; /* let content dictate height */
}
}
"""
# Class Labels
classes = [
'antelope', 'buffalo', 'chimpanzee', 'cow', 'deer', 'dolphin',
'elephant', 'fox', 'giant+panda', 'giraffe', 'gorilla', 'grizzlybear',
'hamster', 'hippopotamus', 'horse', 'humpbackwhale', 'leopard', 'lion',
'moose', 'otter', 'ox', 'pig', 'polarbear', 'rabbit', 'rhinoceros',
'seal', 'sheep', 'squirrel', 'tiger', 'zebra'
]
# Precompute example image paths
example_dir = "examples"
example_images = [os.path.join(example_dir, f) for f in os.listdir(example_dir)
if f.lower().endswith(('.png', '.jpg', '.jpeg', '.webp'))]
# PREPROCESSING PIPELINE (ADD THIS BACK)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Precompute example image paths
example_dir = "examples"
example_images = [os.path.join(example_dir, f) for f in os.listdir(example_dir)
if f.lower().endswith(('.png', '.jpg', '.jpeg', '.webp'))]
def predict(img_path):
"""Process single image and return prediction"""
if not img_path:
return "Please select or upload an image first"
try:
image = Image.open(img_path).convert('RGB')
tensor = preprocess(image).unsqueeze(0)
with torch.inference_mode():
outputs = model(tensor)
_, pred = torch.max(outputs, 1)
return classes[pred.item()]
except Exception as e:
return f"Error: {str(e)}"
with gr.Blocks(title="Wildlife Animal Classifier", css=css) as demo:
gr.Markdown("## 🐾Wildlife Animal Classifier")
gr.Markdown("Select an image below or upload your own, then click Classify")
gr.Markdown("Trained Classes: antelope, buffalo, chimpanzee, cow, deer, dolphin, elephant, fox, giantpanda, giraffe, gorilla, grizzlybear, hamster, hippopotamus, horse, humpbackwhale, leopard, lion, moose, otter, ox, pig, polarbear, rabbit, rhinoceros, seal, sheep, squirrel, tiger, zebra")
# Store current image path
current_image = gr.State()
with gr.Row():
with gr.Column():
image_preview = gr.Image(label="Selected Image", type="filepath")
upload_btn = gr.UploadButton("Upload Custom Image", file_types=["image"])
classify_btn = gr.Button("Classify 🚀", variant="primary")
result = gr.Textbox(label="Prediction", lines=3)
# Example gallery at bottom
with gr.Row(variant="panel"):
examples_gallery = gr.Gallery(
value=example_images,
label="Example Images (Click to Select)",
columns=7,
elem_id="my_media_gallery",
allow_preview=False,
elem_classes=["centered-examples"]
)
# Handle image selection from examples - FIXED OUTPUTS
def select_example(evt: gr.SelectData):
selected_path = example_images[evt.index]
return selected_path, selected_path # Return both image preview and state
examples_gallery.select(
fn=select_example,
outputs=[image_preview, current_image], # Match both components
show_progress=False
)
# Fix upload handler too
upload_btn.upload(
fn=lambda file: (file.name, file.name), # Return both preview and state
inputs=upload_btn,
outputs=[image_preview, current_image]
)
# Handle classification
classify_btn.click(
fn=predict,
inputs=current_image,
outputs=result
)
if __name__ == "__main__":
demo.launch(show_error=True)