File size: 9,181 Bytes
f322570
 
 
 
ca77fd5
 
f322570
 
 
5f757e6
 
 
 
f322570
5f757e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cda534
 
 
 
 
 
 
 
 
 
 
 
 
 
fbf3ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cda534
 
 
fbf3ca4
5f757e6
 
 
 
 
 
 
 
f322570
ca77fd5
 
 
 
f322570
4e539c0
9cfa170
 
 
 
 
 
 
4e539c0
 
 
 
 
d844a2a
eca7b02
d844a2a
 
eca7b02
 
d844a2a
 
eca7b02
 
 
 
 
 
 
 
 
f322570
5060b07
f560c02
d844a2a
af28535
d844a2a
 
f322570
 
d844a2a
 
 
 
 
ca77fd5
d844a2a
ca77fd5
 
 
d844a2a
fbf3ca4
 
ca77fd5
 
f322570
d844a2a
ea0618a
eca7b02
ea0618a
 
ca77fd5
 
eca7b02
ea0618a
ca77fd5
 
ea0618a
 
d844a2a
ea0618a
d844a2a
 
 
 
 
 
ca77fd5
d844a2a
 
f322570
 
 
13685f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
import gradio as gr
import torch.nn as nn
import torch.nn.functional as F
import os
from pathlib import Path
from torch.nn import init
import torchvision.transforms as transforms
from PIL import Image
# MobileNetV3 Model Definition (keep this exactly as in your original code)
class hswish(nn.Module):
    def forward(self, x):
        return x * F.relu6(x + 3) / 6

class hsigmoid(nn.Module):
    def forward(self, x):
        return F.relu6(x + 3) / 6

class SeModule(nn.Module):
    def __init__(self, in_size, reduction=4):
        super().__init__()
        self.se = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_size, in_size//reduction, 1, bias=False),
            nn.BatchNorm2d(in_size//reduction),
            nn.ReLU(inplace=True),
            nn.Conv2d(in_size//reduction, in_size, 1, bias=False),
            nn.BatchNorm2d(in_size),
            hsigmoid()
        )

    def forward(self, x):
        return x * self.se(x)

class Block(nn.Module):
    def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride):
        super().__init__()
        self.stride = stride
        self.se = semodule
        self.conv1 = nn.Conv2d(in_size, expand_size, 1, 1, 0, bias=False)
        self.bn1 = nn.BatchNorm2d(expand_size)
        self.nolinear1 = nolinear
        self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size, stride, kernel_size//2, groups=expand_size, bias=False)
        self.bn2 = nn.BatchNorm2d(expand_size)
        self.nolinear2 = nolinear
        self.conv3 = nn.Conv2d(expand_size, out_size, 1, 1, 0, bias=False)
        self.bn3 = nn.BatchNorm2d(out_size)
        self.shortcut = nn.Sequential()
        if stride == 1 and in_size != out_size:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_size, out_size, 1, 1, 0, bias=False),
                nn.BatchNorm2d(out_size),
            )

    def forward(self, x):
        out = self.nolinear1(self.bn1(self.conv1(x)))
        out = self.nolinear2(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        if self.se: out = self.se(out)
        return out + self.shortcut(x) if self.stride==1 else out

class MobileNetV3_Small(nn.Module):
    def __init__(self, num_classes=30):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 16, 3, 2, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(16)
        self.hs1 = hswish()
        self.bneck = nn.Sequential(
            Block(3, 16, 16, 16, nn.ReLU(), SeModule(16), 2),
            Block(3, 16, 72, 24, nn.ReLU(), None, 2),
            Block(3, 24, 88, 24, nn.ReLU(), None, 1),
            Block(5, 24, 96, 40, hswish(), SeModule(40), 2),
            Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
            Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
            Block(5, 40, 120, 48, hswish(), SeModule(48), 1),
            Block(5, 48, 144, 48, hswish(), SeModule(48), 1),
            Block(5, 48, 288, 96, hswish(), SeModule(96), 2),
            Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
            Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
        )
        self.conv2 = nn.Conv2d(96, 576, 1, 1, 0, bias=False)
        self.bn2 = nn.BatchNorm2d(576)
        self.hs2 = hswish()
        self.linear3 = nn.Linear(576, 1280)
        self.bn3 = nn.BatchNorm1d(1280)
        self.hs3 = hswish()
        self.linear4 = nn.Linear(1280, num_classes)
        
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None: init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None: init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.hs1(self.bn1(self.conv1(x)))
        x = self.bneck(x)
        x = self.hs2(self.bn2(self.conv2(x)))
        x = F.avg_pool2d(x, x.size()[2:])
        x = x.view(x.size(0), -1)
        x = self.hs3(self.bn3(self.linear3(x)))
        return self.linear4(x)

# Initialize Model
model = MobileNetV3_Small().cpu()
model.load_state_dict(torch.load("MobileNet3_small_StateDictionary.pth", map_location='cpu'))
model.eval()


css = """
.centered-examples {
    margin: 0 auto !important;
    justify-content: center !important;
    gap: 8px !important;
    min-height: 150px !important;  /* Added minimum height */
}
.centered-examples .thumb {
    height: 100px !important;
    width: 100px !important;
    object-fit: cover !important;
    margin: 5px !important;  /* Added margin between thumbs */
}

/* 1) Global override: remove any forced sizing on .fixed-height anywhere */
.fixed-height.svelte-842rpi.svelte-842rpi {
  min-height: 0        !important;  /* cancel the global min-height */ 
  max-height: none     !important;  /* cancel the global max-height */ 
  height: auto         !important;  /* allow auto height */ 
}

/* 2) Same-query override: mirror Gradio’s media query exactly */
@media (min-width: 1280px) {
  /* target the exact same class chain inside the breakpoint */
  .fixed-height.svelte-842rpi.svelte-842rpi {
    min-height: 0      !important;  /* zero-out the 55vh/min-height there */ 
    max-height: none   !important;  /* remove the viewport-height cap */ 
    height: auto       !important;  /* let content dictate height */ 
  }
}
"""



# Class Labels
classes = [
    'antelope', 'buffalo', 'chimpanzee', 'cow', 'deer', 'dolphin',
    'elephant', 'fox', 'giant+panda', 'giraffe', 'gorilla', 'grizzlybear',
    'hamster', 'hippopotamus', 'horse', 'humpbackwhale', 'leopard', 'lion',
    'moose', 'otter', 'ox', 'pig', 'polarbear', 'rabbit', 'rhinoceros',
    'seal', 'sheep', 'squirrel', 'tiger', 'zebra'
]

# Precompute example image paths
example_dir = "examples"
example_images = [os.path.join(example_dir, f) for f in os.listdir(example_dir) 
                 if f.lower().endswith(('.png', '.jpg', '.jpeg', '.webp'))]

# PREPROCESSING PIPELINE (ADD THIS BACK)
preprocess = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

# Precompute example image paths
example_dir = "examples"
example_images = [os.path.join(example_dir, f) for f in os.listdir(example_dir) 
                 if f.lower().endswith(('.png', '.jpg', '.jpeg', '.webp'))]

def predict(img_path):
    """Process single image and return prediction"""
    if not img_path:
        return "Please select or upload an image first"
    
    try:
        image = Image.open(img_path).convert('RGB')
        tensor = preprocess(image).unsqueeze(0)
        
        with torch.inference_mode():
            outputs = model(tensor)
            _, pred = torch.max(outputs, 1)
        
        return classes[pred.item()]
    
    except Exception as e:
        return f"Error: {str(e)}"

with gr.Blocks(title="Wildlife Animal Classifier", css=css) as demo:
    gr.Markdown("## 🐾Wildlife Animal Classifier")
    gr.Markdown("Select an image below or upload your own, then click Classify")
    gr.Markdown("Trained Classes: antelope, buffalo, chimpanzee, cow, deer, dolphin, elephant, fox, giantpanda, giraffe, gorilla, grizzlybear, hamster, hippopotamus, horse, humpbackwhale, leopard, lion, moose, otter, ox, pig, polarbear, rabbit, rhinoceros, seal, sheep, squirrel, tiger, zebra")
    # Store current image path
    current_image = gr.State()
    
    with gr.Row():
        with gr.Column():
            image_preview = gr.Image(label="Selected Image", type="filepath")
            upload_btn = gr.UploadButton("Upload Custom Image", file_types=["image"])
            classify_btn = gr.Button("Classify 🚀", variant="primary")
        result = gr.Textbox(label="Prediction", lines=3)
    
    # Example gallery at bottom
    with gr.Row(variant="panel"):
        examples_gallery = gr.Gallery(
            value=example_images,
            label="Example Images (Click to Select)",
            columns=7,        
            elem_id="my_media_gallery",
            allow_preview=False,
            elem_classes=["centered-examples"]
        )

    # Handle image selection from examples - FIXED OUTPUTS
    def select_example(evt: gr.SelectData):
        selected_path = example_images[evt.index]
        return selected_path, selected_path  # Return both image preview and state
    
    examples_gallery.select(
        fn=select_example,
        outputs=[image_preview, current_image],  # Match both components
        show_progress=False
    )
    
    # Fix upload handler too
    upload_btn.upload(
        fn=lambda file: (file.name, file.name),  # Return both preview and state
        inputs=upload_btn,
        outputs=[image_preview, current_image]
    )

    # Handle classification
    classify_btn.click(
        fn=predict,
        inputs=current_image,
        outputs=result
    )

if __name__ == "__main__":
    demo.launch(show_error=True)