Update app.py
Browse files
app.py
CHANGED
@@ -7,8 +7,118 @@ from pathlib import Path
|
|
7 |
from torch.nn import init
|
8 |
import torchvision.transforms as transforms
|
9 |
from PIL import Image
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Precompute example image paths
|
14 |
example_dir = "examples"
|
|
|
7 |
from torch.nn import init
|
8 |
import torchvision.transforms as transforms
|
9 |
from PIL import Image
|
10 |
+
# MobileNetV3 Model Definition (keep this exactly as in your original code)
|
11 |
+
class hswish(nn.Module):
|
12 |
+
def forward(self, x):
|
13 |
+
return x * F.relu6(x + 3) / 6
|
14 |
|
15 |
+
class hsigmoid(nn.Module):
|
16 |
+
def forward(self, x):
|
17 |
+
return F.relu6(x + 3) / 6
|
18 |
+
|
19 |
+
class SeModule(nn.Module):
|
20 |
+
def __init__(self, in_size, reduction=4):
|
21 |
+
super().__init__()
|
22 |
+
self.se = nn.Sequential(
|
23 |
+
nn.AdaptiveAvgPool2d(1),
|
24 |
+
nn.Conv2d(in_size, in_size//reduction, 1, bias=False),
|
25 |
+
nn.BatchNorm2d(in_size//reduction),
|
26 |
+
nn.ReLU(inplace=True),
|
27 |
+
nn.Conv2d(in_size//reduction, in_size, 1, bias=False),
|
28 |
+
nn.BatchNorm2d(in_size),
|
29 |
+
hsigmoid()
|
30 |
+
)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
return x * self.se(x)
|
34 |
+
|
35 |
+
class Block(nn.Module):
|
36 |
+
def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride):
|
37 |
+
super().__init__()
|
38 |
+
self.stride = stride
|
39 |
+
self.se = semodule
|
40 |
+
self.conv1 = nn.Conv2d(in_size, expand_size, 1, 1, 0, bias=False)
|
41 |
+
self.bn1 = nn.BatchNorm2d(expand_size)
|
42 |
+
self.nolinear1 = nolinear
|
43 |
+
self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size, stride, kernel_size//2, groups=expand_size, bias=False)
|
44 |
+
self.bn2 = nn.BatchNorm2d(expand_size)
|
45 |
+
self.nolinear2 = nolinear
|
46 |
+
self.conv3 = nn.Conv2d(expand_size, out_size, 1, 1, 0, bias=False)
|
47 |
+
self.bn3 = nn.BatchNorm2d(out_size)
|
48 |
+
self.shortcut = nn.Sequential()
|
49 |
+
if stride == 1 and in_size != out_size:
|
50 |
+
self.shortcut = nn.Sequential(
|
51 |
+
nn.Conv2d(in_size, out_size, 1, 1, 0, bias=False),
|
52 |
+
nn.BatchNorm2d(out_size),
|
53 |
+
)
|
54 |
+
|
55 |
+
def forward(self, x):
|
56 |
+
out = self.nolinear1(self.bn1(self.conv1(x)))
|
57 |
+
out = self.nolinear2(self.bn2(self.conv2(out)))
|
58 |
+
out = self.bn3(self.conv3(out))
|
59 |
+
if self.se: out = self.se(out)
|
60 |
+
return out + self.shortcut(x) if self.stride==1 else out
|
61 |
+
|
62 |
+
class MobileNetV3_Small(nn.Module):
|
63 |
+
def __init__(self, num_classes=30):
|
64 |
+
super().__init__()
|
65 |
+
self.conv1 = nn.Conv2d(3, 16, 3, 2, 1, bias=False)
|
66 |
+
self.bn1 = nn.BatchNorm2d(16)
|
67 |
+
self.hs1 = hswish()
|
68 |
+
self.bneck = nn.Sequential(
|
69 |
+
Block(3, 16, 16, 16, nn.ReLU(), SeModule(16), 2),
|
70 |
+
Block(3, 16, 72, 24, nn.ReLU(), None, 2),
|
71 |
+
Block(3, 24, 88, 24, nn.ReLU(), None, 1),
|
72 |
+
Block(5, 24, 96, 40, hswish(), SeModule(40), 2),
|
73 |
+
Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
|
74 |
+
Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
|
75 |
+
Block(5, 40, 120, 48, hswish(), SeModule(48), 1),
|
76 |
+
Block(5, 48, 144, 48, hswish(), SeModule(48), 1),
|
77 |
+
Block(5, 48, 288, 96, hswish(), SeModule(96), 2),
|
78 |
+
Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
|
79 |
+
Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
|
80 |
+
)
|
81 |
+
self.conv2 = nn.Conv2d(96, 576, 1, 1, 0, bias=False)
|
82 |
+
self.bn2 = nn.BatchNorm2d(576)
|
83 |
+
self.hs2 = hswish()
|
84 |
+
self.linear3 = nn.Linear(576, 1280)
|
85 |
+
self.bn3 = nn.BatchNorm1d(1280)
|
86 |
+
self.hs3 = hswish()
|
87 |
+
self.linear4 = nn.Linear(1280, num_classes)
|
88 |
+
|
89 |
+
for m in self.modules():
|
90 |
+
if isinstance(m, nn.Conv2d):
|
91 |
+
init.kaiming_normal_(m.weight, mode='fan_out')
|
92 |
+
if m.bias is not None: init.constant_(m.bias, 0)
|
93 |
+
elif isinstance(m, nn.BatchNorm2d):
|
94 |
+
init.constant_(m.weight, 1)
|
95 |
+
init.constant_(m.bias, 0)
|
96 |
+
elif isinstance(m, nn.Linear):
|
97 |
+
init.normal_(m.weight, std=0.001)
|
98 |
+
if m.bias is not None: init.constant_(m.bias, 0)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
x = self.hs1(self.bn1(self.conv1(x)))
|
102 |
+
x = self.bneck(x)
|
103 |
+
x = self.hs2(self.bn2(self.conv2(x)))
|
104 |
+
x = F.avg_pool2d(x, x.size()[2:])
|
105 |
+
x = x.view(x.size(0), -1)
|
106 |
+
x = self.hs3(self.bn3(self.linear3(x)))
|
107 |
+
return self.linear4(x)
|
108 |
+
|
109 |
+
# Initialize Model
|
110 |
+
model = MobileNetV3_Small().cpu()
|
111 |
+
model.load_state_dict(torch.load("MobileNet3_small_StateDictionary.pth", map_location='cpu'))
|
112 |
+
model.eval()
|
113 |
+
|
114 |
+
# Class Labels
|
115 |
+
classes = [
|
116 |
+
'antelope', 'buffalo', 'chimpanzee', 'cow', 'deer', 'dolphin',
|
117 |
+
'elephant', 'fox', 'giant+panda', 'giraffe', 'gorilla', 'grizzlybear',
|
118 |
+
'hamster', 'hippopotamus', 'horse', 'humpbackwhale', 'leopard', 'lion',
|
119 |
+
'moose', 'otter', 'ox', 'pig', 'polarbear', 'rabbit', 'rhinoceros',
|
120 |
+
'seal', 'sheep', 'squirrel', 'tiger', 'zebra'
|
121 |
+
]
|
122 |
|
123 |
# Precompute example image paths
|
124 |
example_dir = "examples"
|