Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,18 +7,15 @@ def main():
|
|
7 |
# Load the spam detection pipeline
|
8 |
spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
9 |
|
10 |
-
# Load the sentiment model and tokenizer
|
11 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("ISOM5240GP4/email_sentiment", num_labels=2)
|
12 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
13 |
|
14 |
-
# Title and description
|
15 |
st.title("Email Analysis Tool")
|
16 |
st.write("Enter an email body below to check if it's spam and analyze its sentiment.")
|
17 |
|
18 |
-
# Text area for email input
|
19 |
email_body = st.text_area("Email Body", height=200)
|
20 |
|
21 |
-
# Button to trigger analysis
|
22 |
if st.button("Analyze Email"):
|
23 |
if email_body:
|
24 |
# Step 1: Check if the email is spam
|
@@ -26,8 +23,8 @@ def main():
|
|
26 |
spam_label = spam_result[0]["label"]
|
27 |
spam_confidence = spam_result[0]["score"]
|
28 |
|
29 |
-
#
|
30 |
-
if spam_label == "
|
31 |
st.write(f"This is a spam email (Confidence: {spam_confidence:.2f}). No follow-up needed.")
|
32 |
else:
|
33 |
# Step 2: Analyze sentiment for non-spam emails
|
@@ -38,13 +35,12 @@ def main():
|
|
38 |
sentiment_index = np.argmax(predictions)
|
39 |
sentiment_confidence = predictions[0][sentiment_index]
|
40 |
|
41 |
-
# Map index to sentiment (1 = positive, 0 = negative)
|
42 |
sentiment = "Positive" if sentiment_index == 1 else "Negative"
|
43 |
|
44 |
if sentiment == "Positive":
|
45 |
st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
|
46 |
st.write(f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}). No follow-up needed.")
|
47 |
-
else:
|
48 |
st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
|
49 |
st.write(f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}).")
|
50 |
st.write("**This email needs follow-up as it is not spam and has negative sentiment.**")
|
|
|
7 |
# Load the spam detection pipeline
|
8 |
spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
9 |
|
10 |
+
# Load the sentiment model and tokenizer
|
11 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("ISOM5240GP4/email_sentiment", num_labels=2)
|
12 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
13 |
|
|
|
14 |
st.title("Email Analysis Tool")
|
15 |
st.write("Enter an email body below to check if it's spam and analyze its sentiment.")
|
16 |
|
|
|
17 |
email_body = st.text_area("Email Body", height=200)
|
18 |
|
|
|
19 |
if st.button("Analyze Email"):
|
20 |
if email_body:
|
21 |
# Step 1: Check if the email is spam
|
|
|
23 |
spam_label = spam_result[0]["label"]
|
24 |
spam_confidence = spam_result[0]["score"]
|
25 |
|
26 |
+
# Check if label is 'LABEL_1' for spam
|
27 |
+
if spam_label == "LABEL_1":
|
28 |
st.write(f"This is a spam email (Confidence: {spam_confidence:.2f}). No follow-up needed.")
|
29 |
else:
|
30 |
# Step 2: Analyze sentiment for non-spam emails
|
|
|
35 |
sentiment_index = np.argmax(predictions)
|
36 |
sentiment_confidence = predictions[0][sentiment_index]
|
37 |
|
|
|
38 |
sentiment = "Positive" if sentiment_index == 1 else "Negative"
|
39 |
|
40 |
if sentiment == "Positive":
|
41 |
st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
|
42 |
st.write(f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}). No follow-up needed.")
|
43 |
+
else:
|
44 |
st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
|
45 |
st.write(f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}).")
|
46 |
st.write("**This email needs follow-up as it is not spam and has negative sentiment.**")
|