Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,15 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import pipeline
|
|
|
|
|
3 |
|
4 |
def main():
|
5 |
-
# Load the
|
6 |
spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
7 |
-
|
|
|
|
|
|
|
8 |
|
9 |
# Title and description
|
10 |
st.title("Email Analysis Tool")
|
@@ -21,21 +26,27 @@ def main():
|
|
21 |
spam_label = spam_result[0]["label"]
|
22 |
spam_confidence = spam_result[0]["score"]
|
23 |
|
24 |
-
#
|
25 |
-
if spam_label == "POSITIVE":
|
26 |
st.write(f"This is a spam email (Confidence: {spam_confidence:.2f}). No follow-up needed.")
|
27 |
else:
|
28 |
-
# Step 2:
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
if
|
34 |
st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
|
35 |
-
st.write(f"Sentiment:
|
36 |
-
else: #
|
37 |
st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
|
38 |
-
st.write(f"Sentiment:
|
39 |
st.write("**This email needs follow-up as it is not spam and has negative sentiment.**")
|
40 |
else:
|
41 |
st.write("Please enter an email body to analyze.")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
|
6 |
def main():
|
7 |
+
# Load the spam detection pipeline
|
8 |
spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
9 |
+
|
10 |
+
# Load the sentiment model and tokenizer directly
|
11 |
+
sentiment_model = AutoModelForSequenceClassification.from_pretrained("ISOM5240GP4/email_sentiment", num_labels=2)
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
13 |
|
14 |
# Title and description
|
15 |
st.title("Email Analysis Tool")
|
|
|
26 |
spam_label = spam_result[0]["label"]
|
27 |
spam_confidence = spam_result[0]["score"]
|
28 |
|
29 |
+
# Assuming "POSITIVE" means spam/phishing (adjust if incorrect)
|
30 |
+
if spam_label == "POSITIVE":
|
31 |
st.write(f"This is a spam email (Confidence: {spam_confidence:.2f}). No follow-up needed.")
|
32 |
else:
|
33 |
+
# Step 2: Analyze sentiment for non-spam emails
|
34 |
+
inputs = tokenizer(email_body, padding=True, truncation=True, return_tensors='pt')
|
35 |
+
outputs = sentiment_model(**inputs)
|
36 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
37 |
+
predictions = predictions.cpu().detach().numpy()
|
38 |
+
sentiment_index = np.argmax(predictions)
|
39 |
+
sentiment_confidence = predictions[0][sentiment_index]
|
40 |
+
|
41 |
+
# Map index to sentiment (1 = positive, 0 = negative)
|
42 |
+
sentiment = "Positive" if sentiment_index == 1 else "Negative"
|
43 |
|
44 |
+
if sentiment == "Positive":
|
45 |
st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
|
46 |
+
st.write(f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}). No follow-up needed.")
|
47 |
+
else: # Negative sentiment
|
48 |
st.write(f"This email is not spam (Confidence: {spam_confidence:.2f}).")
|
49 |
+
st.write(f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}).")
|
50 |
st.write("**This email needs follow-up as it is not spam and has negative sentiment.**")
|
51 |
else:
|
52 |
st.write("Please enter an email body to analyze.")
|