Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,47 +3,59 @@ from transformers import pipeline, AutoModelForSequenceClassification, AutoToken
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
|
|
|
6 |
def analyze_email(email_body):
|
|
|
7 |
spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
8 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("ISOM5240GP4/email_sentiment", num_labels=2)
|
9 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
sentiment_index = np.argmax(predictions)
|
23 |
-
sentiment_confidence = predictions[0][sentiment_index]
|
24 |
-
sentiment = "Positive" if sentiment_index == 1 else "Negative"
|
25 |
-
|
26 |
-
if sentiment == "Positive":
|
27 |
-
return "positive", (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
|
28 |
-
f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}). No follow-up needed.")
|
29 |
else:
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
34 |
def main():
|
|
|
35 |
st.title("EmailSentry")
|
36 |
st.write("Aims to perform analysis on incoming emails and to determine whether there is urgency or higher priority for the company to follow-up.")
|
37 |
-
|
38 |
-
# Initialize session state
|
39 |
if "email_body" not in st.session_state:
|
40 |
st.session_state.email_body = ""
|
41 |
if "result" not in st.session_state:
|
42 |
st.session_state.result = ""
|
43 |
if "result_type" not in st.session_state:
|
44 |
st.session_state.result_type = ""
|
45 |
-
|
46 |
-
#
|
47 |
with st.expander("How to Use", expanded=False):
|
48 |
st.write("""
|
49 |
- Type or paste an email into the text box.
|
@@ -51,11 +63,11 @@ def main():
|
|
51 |
- Press 'Analyze Email' to check if it’s spam and analyze its sentiment.
|
52 |
- Use 'Clear' to reset the input and result.
|
53 |
""")
|
54 |
-
|
55 |
# Text area for email input
|
56 |
email_body = st.text_area("Email Body", value=st.session_state.email_body, height=200, key="email_input")
|
57 |
-
|
58 |
-
#
|
59 |
sample_spam = """
|
60 |
Subject: Urgent: Verify Your Account Now!
|
61 |
Dear Customer,
|
@@ -66,7 +78,7 @@ Best regards,
|
|
66 |
The Security Team
|
67 |
"""
|
68 |
spam_snippet = "Subject: Urgent: Verify Your Account Now! Dear Customer, We have detected unusual activity..."
|
69 |
-
|
70 |
sample_not_spam_positive = """
|
71 |
Subject: Great Experience with HKTV mall
|
72 |
Dear Sir,
|
@@ -75,7 +87,7 @@ Best regards,
|
|
75 |
Emily
|
76 |
"""
|
77 |
positive_snippet = "Subject: Great Experience with HKTV mall Dear Sir, I just received my order and I’m really..."
|
78 |
-
|
79 |
sample_not_spam_negative = """
|
80 |
Subject: Issue with Recent Delivery
|
81 |
Dear Support,
|
@@ -84,11 +96,64 @@ Thanks,
|
|
84 |
Sarah
|
85 |
"""
|
86 |
negative_snippet = "Subject: Issue with Recent Delivery Dear Support, I received my package today, but..."
|
87 |
-
|
88 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
st.markdown("""
|
90 |
<style>
|
91 |
-
/* Sample buttons (
|
92 |
div.stButton > button[kind="secondary"] {
|
93 |
font-size: 12px;
|
94 |
padding: 5px 10px;
|
@@ -97,7 +162,7 @@ Sarah
|
|
97 |
border: 1px solid #cccccc;
|
98 |
border-radius: 3px;
|
99 |
}
|
100 |
-
/* Analyze Email button (larger,
|
101 |
div.stButton > button[kind="primary"] {
|
102 |
background-color: #FF5733;
|
103 |
color: white;
|
@@ -110,19 +175,19 @@ Sarah
|
|
110 |
div.stButton > button[kind="primary"]:hover {
|
111 |
background-color: #E74C3C;
|
112 |
}
|
113 |
-
/* Clear button (
|
114 |
div.stButton > button[kind="secondary"][key="clear"] {
|
115 |
-
background-color: #
|
116 |
-
color:
|
117 |
font-size: 16px;
|
118 |
padding: 10px 20px;
|
119 |
border: none;
|
120 |
border-radius: 5px;
|
121 |
}
|
122 |
div.stButton > button[kind="secondary"][key="clear"]:hover {
|
123 |
-
background-color: #
|
124 |
}
|
125 |
-
/* Result boxes */
|
126 |
.spam-result {
|
127 |
background-color: #ffcccc;
|
128 |
padding: 10px;
|
@@ -144,56 +209,5 @@ Sarah
|
|
144 |
</style>
|
145 |
""", unsafe_allow_html=True)
|
146 |
|
147 |
-
# Sample buttons (in columns)
|
148 |
-
col1, col2, col3 = st.columns(3)
|
149 |
-
with col1:
|
150 |
-
if st.button(spam_snippet, key="spam_sample"):
|
151 |
-
st.session_state.email_body = sample_spam
|
152 |
-
st.session_state.result = ""
|
153 |
-
st.session_state.result_type = ""
|
154 |
-
st.rerun()
|
155 |
-
with col2:
|
156 |
-
if st.button(positive_snippet, key="positive_sample"):
|
157 |
-
st.session_state.email_body = sample_not_spam_positive
|
158 |
-
st.session_state.result = ""
|
159 |
-
st.session_state.result_type = ""
|
160 |
-
st.rerun()
|
161 |
-
with col3:
|
162 |
-
if st.button(negative_snippet, key="negative_sample"):
|
163 |
-
st.session_state.email_body = sample_not_spam_negative
|
164 |
-
st.session_state.result = ""
|
165 |
-
st.session_state.result_type = ""
|
166 |
-
st.rerun()
|
167 |
-
|
168 |
-
# Analyze and Clear buttons (in a row)
|
169 |
-
col_analyze, col_clear = st.columns([1, 1])
|
170 |
-
with col_analyze:
|
171 |
-
if st.button("Analyze Email", key="analyze", type="primary"):
|
172 |
-
if email_body:
|
173 |
-
with st.spinner("Analyzing email..."):
|
174 |
-
result_type, result = analyze_email(email_body)
|
175 |
-
st.session_state.result = result
|
176 |
-
st.session_state.result_type = result_type
|
177 |
-
else:
|
178 |
-
st.session_state.result = "Please enter an email body or select a sample to analyze."
|
179 |
-
st.session_state.result_type = ""
|
180 |
-
with col_clear:
|
181 |
-
if st.button("Clear", key="clear"):
|
182 |
-
st.session_state.email_body = ""
|
183 |
-
st.session_state.result = ""
|
184 |
-
st.session_state.result_type = ""
|
185 |
-
st.rerun()
|
186 |
-
|
187 |
-
# Display result with styled box
|
188 |
-
if st.session_state.result:
|
189 |
-
if st.session_state.result_type == "spam":
|
190 |
-
st.markdown(f'<div class="spam-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
191 |
-
elif st.session_state.result_type == "positive":
|
192 |
-
st.markdown(f'<div class="positive-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
193 |
-
elif st.session_state.result_type == "negative":
|
194 |
-
st.markdown(f'<div class="negative-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
195 |
-
else:
|
196 |
-
st.write(st.session_state.result) # For error messages
|
197 |
-
|
198 |
if __name__ == "__main__":
|
199 |
main()
|
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
|
6 |
+
# Function to analyze email (no caching, models loaded each time)
|
7 |
def analyze_email(email_body):
|
8 |
+
"""Analyzes an email for spam and sentiment, returning result type and message."""
|
9 |
spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
10 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("ISOM5240GP4/email_sentiment", num_labels=2)
|
11 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
12 |
|
13 |
+
if not email_body.strip():
|
14 |
+
return "error", "Email body is empty. Please provide an email to analyze."
|
15 |
+
|
16 |
+
try:
|
17 |
+
# Step 1: Check if the email is spam
|
18 |
+
spam_result = spam_pipeline(email_body)
|
19 |
+
spam_label = spam_result[0]["label"] # LABEL_1 indicates spam
|
20 |
+
spam_confidence = spam_result[0]["score"]
|
21 |
+
|
22 |
+
if spam_label == "LABEL_1":
|
23 |
+
return "spam", f"This is a spam email (Confidence: {spam_confidence:.2f}). No follow-up needed."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
else:
|
25 |
+
# Step 2: Analyze sentiment for non-spam emails
|
26 |
+
inputs = tokenizer(email_body, padding=True, truncation=True, return_tensors='pt')
|
27 |
+
outputs = sentiment_model(**inputs)
|
28 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
29 |
+
predictions = predictions.cpu().detach().numpy()
|
30 |
+
sentiment_index = np.argmax(predictions)
|
31 |
+
sentiment_confidence = predictions[0][sentiment_index]
|
32 |
+
sentiment = "Positive" if sentiment_index == 1 else "Negative"
|
33 |
+
|
34 |
+
if sentiment == "Positive":
|
35 |
+
return "positive", (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
|
36 |
+
f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}). No follow-up needed.")
|
37 |
+
else:
|
38 |
+
return "negative", (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
|
39 |
+
f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}).\n"
|
40 |
+
"<b>Need to Follow-Up</b>: This email is not spam and has negative sentiment.")
|
41 |
+
except Exception as e:
|
42 |
+
return "error", f"An error occurred during analysis: {str(e)}"
|
43 |
|
44 |
+
# Main application function
|
45 |
def main():
|
46 |
+
# Set title and objective
|
47 |
st.title("EmailSentry")
|
48 |
st.write("Aims to perform analysis on incoming emails and to determine whether there is urgency or higher priority for the company to follow-up.")
|
49 |
+
|
50 |
+
# Initialize session state variables
|
51 |
if "email_body" not in st.session_state:
|
52 |
st.session_state.email_body = ""
|
53 |
if "result" not in st.session_state:
|
54 |
st.session_state.result = ""
|
55 |
if "result_type" not in st.session_state:
|
56 |
st.session_state.result_type = ""
|
57 |
+
|
58 |
+
# Instructions section
|
59 |
with st.expander("How to Use", expanded=False):
|
60 |
st.write("""
|
61 |
- Type or paste an email into the text box.
|
|
|
63 |
- Press 'Analyze Email' to check if it’s spam and analyze its sentiment.
|
64 |
- Use 'Clear' to reset the input and result.
|
65 |
""")
|
66 |
+
|
67 |
# Text area for email input
|
68 |
email_body = st.text_area("Email Body", value=st.session_state.email_body, height=200, key="email_input")
|
69 |
+
|
70 |
+
# Define sample emails
|
71 |
sample_spam = """
|
72 |
Subject: Urgent: Verify Your Account Now!
|
73 |
Dear Customer,
|
|
|
78 |
The Security Team
|
79 |
"""
|
80 |
spam_snippet = "Subject: Urgent: Verify Your Account Now! Dear Customer, We have detected unusual activity..."
|
81 |
+
|
82 |
sample_not_spam_positive = """
|
83 |
Subject: Great Experience with HKTV mall
|
84 |
Dear Sir,
|
|
|
87 |
Emily
|
88 |
"""
|
89 |
positive_snippet = "Subject: Great Experience with HKTV mall Dear Sir, I just received my order and I’m really..."
|
90 |
+
|
91 |
sample_not_spam_negative = """
|
92 |
Subject: Issue with Recent Delivery
|
93 |
Dear Support,
|
|
|
96 |
Sarah
|
97 |
"""
|
98 |
negative_snippet = "Subject: Issue with Recent Delivery Dear Support, I received my package today, but..."
|
99 |
+
|
100 |
+
# Display sample buttons
|
101 |
+
st.subheader("Examples")
|
102 |
+
col1, col2, col3 = st.columns(3)
|
103 |
+
with col1:
|
104 |
+
if st.button(spam_snippet, key="spam_sample"):
|
105 |
+
st.session_state.email_body = sample_spam
|
106 |
+
st.session_state.result = ""
|
107 |
+
st.session_state.result_type = ""
|
108 |
+
st.rerun()
|
109 |
+
with col2:
|
110 |
+
if st.button(positive_snippet, key="positive_sample"):
|
111 |
+
st.session_state.email_body = sample_not_spam_positive
|
112 |
+
st.session_state.result = ""
|
113 |
+
st.session_state.result_type = ""
|
114 |
+
st.rerun()
|
115 |
+
with col3:
|
116 |
+
if st.button(negative_snippet, key="negative_sample"):
|
117 |
+
st.session_state.email_body = sample_not_spam_negative
|
118 |
+
st.session_state.result = ""
|
119 |
+
st.session_state.result_type = ""
|
120 |
+
st.rerun()
|
121 |
+
|
122 |
+
# Action buttons
|
123 |
+
col_analyze, col_clear = st.columns(2)
|
124 |
+
with col_analyze:
|
125 |
+
if st.button("Analyze Email", key="analyze", type="primary"):
|
126 |
+
if email_body:
|
127 |
+
with st.spinner("Analyzing email..."):
|
128 |
+
result_type, result = analyze_email(email_body)
|
129 |
+
st.session_state.result = result
|
130 |
+
st.session_state.result_type = result_type
|
131 |
+
else:
|
132 |
+
st.session_state.result = "Please enter an email body or select a sample to analyze."
|
133 |
+
st.session_state.result_type = ""
|
134 |
+
|
135 |
+
with col_clear:
|
136 |
+
if st.button("Clear", key="clear"):
|
137 |
+
st.session_state.email_body = ""
|
138 |
+
st.session_state.result = ""
|
139 |
+
st.session_state.result_type = ""
|
140 |
+
st.rerun()
|
141 |
+
|
142 |
+
# Display analysis result
|
143 |
+
if st.session_state.result:
|
144 |
+
if st.session_state.result_type == "spam":
|
145 |
+
st.markdown(f'<div class="spam-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
146 |
+
elif st.session_state.result_type == "positive":
|
147 |
+
st.markdown(f'<div class="positive-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
148 |
+
elif st.session_state.result_type == "negative":
|
149 |
+
st.markdown(f'<div class="negative-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
150 |
+
else:
|
151 |
+
st.write(st.session_state.result)
|
152 |
+
|
153 |
+
# Inject custom CSS (matching your working version for primary button)
|
154 |
st.markdown("""
|
155 |
<style>
|
156 |
+
/* Sample buttons (light grey, small) */
|
157 |
div.stButton > button[kind="secondary"] {
|
158 |
font-size: 12px;
|
159 |
padding: 5px 10px;
|
|
|
162 |
border: 1px solid #cccccc;
|
163 |
border-radius: 3px;
|
164 |
}
|
165 |
+
/* Analyze Email button (orange, larger, matching your working code) */
|
166 |
div.stButton > button[kind="primary"] {
|
167 |
background-color: #FF5733;
|
168 |
color: white;
|
|
|
175 |
div.stButton > button[kind="primary"]:hover {
|
176 |
background-color: #E74C3C;
|
177 |
}
|
178 |
+
/* Clear button (blue as requested) */
|
179 |
div.stButton > button[kind="secondary"][key="clear"] {
|
180 |
+
background-color: #007BFF;
|
181 |
+
color: white;
|
182 |
font-size: 16px;
|
183 |
padding: 10px 20px;
|
184 |
border: none;
|
185 |
border-radius: 5px;
|
186 |
}
|
187 |
div.stButton > button[kind="secondary"][key="clear"]:hover {
|
188 |
+
background-color: #0056b3;
|
189 |
}
|
190 |
+
/* Result boxes (from your working code) */
|
191 |
.spam-result {
|
192 |
background-color: #ffcccc;
|
193 |
padding: 10px;
|
|
|
209 |
</style>
|
210 |
""", unsafe_allow_html=True)
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
if __name__ == "__main__":
|
213 |
main()
|