Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,70 +3,47 @@ from transformers import pipeline, AutoModelForSequenceClassification, AutoToken
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
return pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
10 |
-
|
11 |
-
@st.cache_resource
|
12 |
-
def load_sentiment_model():
|
13 |
-
model = AutoModelForSequenceClassification.from_pretrained("ISOM5240GP4/email_sentiment", num_labels=2)
|
14 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
15 |
-
return model, tokenizer
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
else:
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
40 |
-
predictions = predictions.cpu().detach().numpy()
|
41 |
-
sentiment_index = np.argmax(predictions)
|
42 |
-
sentiment_confidence = predictions[0][sentiment_index]
|
43 |
-
sentiment = "Positive" if sentiment_index == 1 else "Negative"
|
44 |
-
|
45 |
-
if sentiment == "Positive":
|
46 |
-
return "positive", (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
|
47 |
-
f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}). No follow-up needed.")
|
48 |
-
else:
|
49 |
-
return "negative", (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
|
50 |
-
f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}).\n"
|
51 |
-
"<b>Need to Follow-Up</b>: This email is not spam and has negative sentiment.")
|
52 |
-
except Exception as e:
|
53 |
-
return "error", f"An error occurred during analysis: {str(e)}"
|
54 |
|
55 |
-
# Main application function
|
56 |
def main():
|
57 |
-
# Set title and objective
|
58 |
st.title("EmailSentry")
|
59 |
st.write("Aims to perform analysis on incoming emails and to determine whether there is urgency or higher priority for the company to follow-up.")
|
60 |
-
|
61 |
-
# Initialize session state
|
62 |
if "email_body" not in st.session_state:
|
63 |
st.session_state.email_body = ""
|
64 |
if "result" not in st.session_state:
|
65 |
st.session_state.result = ""
|
66 |
if "result_type" not in st.session_state:
|
67 |
st.session_state.result_type = ""
|
68 |
-
|
69 |
-
#
|
70 |
with st.expander("How to Use", expanded=False):
|
71 |
st.write("""
|
72 |
- Type or paste an email into the text box.
|
@@ -74,11 +51,11 @@ def main():
|
|
74 |
- Press 'Analyze Email' to check if it’s spam and analyze its sentiment.
|
75 |
- Use 'Clear' to reset the input and result.
|
76 |
""")
|
77 |
-
|
78 |
# Text area for email input
|
79 |
email_body = st.text_area("Email Body", value=st.session_state.email_body, height=200, key="email_input")
|
80 |
-
|
81 |
-
#
|
82 |
sample_spam = """
|
83 |
Subject: Urgent: Verify Your Account Now!
|
84 |
Dear Customer,
|
@@ -89,7 +66,7 @@ Best regards,
|
|
89 |
The Security Team
|
90 |
"""
|
91 |
spam_snippet = "Subject: Urgent: Verify Your Account Now! Dear Customer, We have detected unusual activity..."
|
92 |
-
|
93 |
sample_not_spam_positive = """
|
94 |
Subject: Great Experience with HKTV mall
|
95 |
Dear Sir,
|
@@ -98,7 +75,7 @@ Best regards,
|
|
98 |
Emily
|
99 |
"""
|
100 |
positive_snippet = "Subject: Great Experience with HKTV mall Dear Sir, I just received my order and I’m really..."
|
101 |
-
|
102 |
sample_not_spam_negative = """
|
103 |
Subject: Issue with Recent Delivery
|
104 |
Dear Support,
|
@@ -107,9 +84,67 @@ Thanks,
|
|
107 |
Sarah
|
108 |
"""
|
109 |
negative_snippet = "Subject: Issue with Recent Delivery Dear Support, I received my package today, but..."
|
110 |
-
|
111 |
-
#
|
112 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
col1, col2, col3 = st.columns(3)
|
114 |
with col1:
|
115 |
if st.button(spam_snippet, key="spam_sample"):
|
@@ -129,11 +164,11 @@ Sarah
|
|
129 |
st.session_state.result = ""
|
130 |
st.session_state.result_type = ""
|
131 |
st.rerun()
|
132 |
-
|
133 |
-
#
|
134 |
-
col_analyze, col_clear = st.columns(
|
135 |
with col_analyze:
|
136 |
-
if st.button("Analyze Email", key="analyze"):
|
137 |
if email_body:
|
138 |
with st.spinner("Analyzing email..."):
|
139 |
result_type, result = analyze_email(email_body)
|
@@ -142,15 +177,14 @@ Sarah
|
|
142 |
else:
|
143 |
st.session_state.result = "Please enter an email body or select a sample to analyze."
|
144 |
st.session_state.result_type = ""
|
145 |
-
|
146 |
with col_clear:
|
147 |
if st.button("Clear", key="clear"):
|
148 |
st.session_state.email_body = ""
|
149 |
st.session_state.result = ""
|
150 |
st.session_state.result_type = ""
|
151 |
st.rerun()
|
152 |
-
|
153 |
-
# Display
|
154 |
if st.session_state.result:
|
155 |
if st.session_state.result_type == "spam":
|
156 |
st.markdown(f'<div class="spam-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
@@ -159,76 +193,7 @@ Sarah
|
|
159 |
elif st.session_state.result_type == "negative":
|
160 |
st.markdown(f'<div class="negative-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
161 |
else:
|
162 |
-
st.write(st.session_state.result)
|
163 |
-
|
164 |
-
# Inject custom CSS without !important, based on your previous working code
|
165 |
-
st.markdown("""
|
166 |
-
<style>
|
167 |
-
/* Style for sample buttons (light grey) */
|
168 |
-
div.stButton > button[kind="secondary"]:not([key="clear"]) {
|
169 |
-
font-size: 12px;
|
170 |
-
padding: 5px 10px;
|
171 |
-
background-color: #f0f0f0;
|
172 |
-
color: #333333;
|
173 |
-
border: 1px solid #cccccc;
|
174 |
-
border-radius: 3px;
|
175 |
-
}
|
176 |
-
/* Analyze Email button (orange) */
|
177 |
-
div.stButton > button[key="analyze"] {
|
178 |
-
background-color: #FF5733;
|
179 |
-
color: white;
|
180 |
-
font-size: 18px;
|
181 |
-
padding: 12px 24px;
|
182 |
-
border: none;
|
183 |
-
border-radius: 5px;
|
184 |
-
width: 100%;
|
185 |
-
height: 50px;
|
186 |
-
box-sizing: border-box;
|
187 |
-
text-align: center;
|
188 |
-
}
|
189 |
-
div.stButton > button[key="analyze"]:hover {
|
190 |
-
background-color: #E74C3C;
|
191 |
-
}
|
192 |
-
/* Clear button (blue) */
|
193 |
-
div.stButton > button[key="clear"] {
|
194 |
-
background-color: #007BFF;
|
195 |
-
color: white;
|
196 |
-
font-size: 18px;
|
197 |
-
padding: 12px 24px;
|
198 |
-
border: none;
|
199 |
-
border-radius: 5px;
|
200 |
-
width: 100%;
|
201 |
-
height: 50px;
|
202 |
-
box-sizing: border-box;
|
203 |
-
text-align: center;
|
204 |
-
}
|
205 |
-
div.stButton > button[key="clear"]:hover {
|
206 |
-
background-color: #0056b3;
|
207 |
-
}
|
208 |
-
/* Result boxes */
|
209 |
-
.spam-result {
|
210 |
-
background-color: #ff3333;
|
211 |
-
color: white;
|
212 |
-
padding: 10px;
|
213 |
-
border-radius: 5px;
|
214 |
-
border: 1px solid #cc0000;
|
215 |
-
}
|
216 |
-
.positive-result {
|
217 |
-
background-color: #ff3333;
|
218 |
-
color: white;
|
219 |
-
padding: 10px;
|
220 |
-
border-radius: 5px;
|
221 |
-
border: 1px solid #cc0000;
|
222 |
-
}
|
223 |
-
.negative-result {
|
224 |
-
background-color: #006633;
|
225 |
-
color: white;
|
226 |
-
padding: 10px;
|
227 |
-
border-radius: 5px;
|
228 |
-
border: 1px solid #004d26;
|
229 |
-
}
|
230 |
-
</style>
|
231 |
-
""", unsafe_allow_html=True)
|
232 |
|
233 |
if __name__ == "__main__":
|
234 |
main()
|
|
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
|
6 |
+
def analyze_email(email_body):
|
7 |
+
spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
|
8 |
+
sentiment_model = AutoModelForSequenceClassification.from_pretrained("ISOM5240GP4/email_sentiment", num_labels=2)
|
|
|
|
|
|
|
|
|
|
|
9 |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
|
|
|
10 |
|
11 |
+
spam_result = spam_pipeline(email_body)
|
12 |
+
spam_label = spam_result[0]["label"]
|
13 |
+
spam_confidence = spam_result[0]["score"]
|
14 |
|
15 |
+
if spam_label == "LABEL_1":
|
16 |
+
return "spam", f"This is a spam email (Confidence: {spam_confidence:.2f}). No follow-up needed."
|
17 |
+
else:
|
18 |
+
inputs = tokenizer(email_body, padding=True, truncation=True, return_tensors='pt')
|
19 |
+
outputs = sentiment_model(**inputs)
|
20 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
21 |
+
predictions = predictions.cpu().detach().numpy()
|
22 |
+
sentiment_index = np.argmax(predictions)
|
23 |
+
sentiment_confidence = predictions[0][sentiment_index]
|
24 |
+
sentiment = "Positive" if sentiment_index == 1 else "Negative"
|
25 |
+
|
26 |
+
if sentiment == "Positive":
|
27 |
+
return "positive", (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
|
28 |
+
f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}). No follow-up needed.")
|
29 |
else:
|
30 |
+
return "negative", (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
|
31 |
+
f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}).\n"
|
32 |
+
"**Need to Follow-Up**: This email is not spam and has negative sentiment.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
34 |
def main():
|
|
|
35 |
st.title("EmailSentry")
|
36 |
st.write("Aims to perform analysis on incoming emails and to determine whether there is urgency or higher priority for the company to follow-up.")
|
37 |
+
|
38 |
+
# Initialize session state
|
39 |
if "email_body" not in st.session_state:
|
40 |
st.session_state.email_body = ""
|
41 |
if "result" not in st.session_state:
|
42 |
st.session_state.result = ""
|
43 |
if "result_type" not in st.session_state:
|
44 |
st.session_state.result_type = ""
|
45 |
+
|
46 |
+
# Collapsible instructions
|
47 |
with st.expander("How to Use", expanded=False):
|
48 |
st.write("""
|
49 |
- Type or paste an email into the text box.
|
|
|
51 |
- Press 'Analyze Email' to check if it’s spam and analyze its sentiment.
|
52 |
- Use 'Clear' to reset the input and result.
|
53 |
""")
|
54 |
+
|
55 |
# Text area for email input
|
56 |
email_body = st.text_area("Email Body", value=st.session_state.email_body, height=200, key="email_input")
|
57 |
+
|
58 |
+
# Sample emails (shortened snippets for button labels)
|
59 |
sample_spam = """
|
60 |
Subject: Urgent: Verify Your Account Now!
|
61 |
Dear Customer,
|
|
|
66 |
The Security Team
|
67 |
"""
|
68 |
spam_snippet = "Subject: Urgent: Verify Your Account Now! Dear Customer, We have detected unusual activity..."
|
69 |
+
|
70 |
sample_not_spam_positive = """
|
71 |
Subject: Great Experience with HKTV mall
|
72 |
Dear Sir,
|
|
|
75 |
Emily
|
76 |
"""
|
77 |
positive_snippet = "Subject: Great Experience with HKTV mall Dear Sir, I just received my order and I’m really..."
|
78 |
+
|
79 |
sample_not_spam_negative = """
|
80 |
Subject: Issue with Recent Delivery
|
81 |
Dear Support,
|
|
|
84 |
Sarah
|
85 |
"""
|
86 |
negative_snippet = "Subject: Issue with Recent Delivery Dear Support, I received my package today, but..."
|
87 |
+
|
88 |
+
# Custom CSS for buttons and result boxes
|
89 |
+
st.markdown("""
|
90 |
+
<style>
|
91 |
+
/* Sample buttons (smaller text) */
|
92 |
+
div.stButton > button[kind="secondary"] {
|
93 |
+
font-size: 12px;
|
94 |
+
padding: 5px 10px;
|
95 |
+
background-color: #f0f0f0;
|
96 |
+
color: #333333;
|
97 |
+
border: 1px solid #cccccc;
|
98 |
+
border-radius: 3px;
|
99 |
+
}
|
100 |
+
/* Analyze Email button (larger, orange) */
|
101 |
+
div.stButton > button[kind="primary"] {
|
102 |
+
background-color: #FF5733;
|
103 |
+
color: white;
|
104 |
+
font-size: 18px;
|
105 |
+
padding: 12px 24px;
|
106 |
+
border: none;
|
107 |
+
border-radius: 5px;
|
108 |
+
margin-right: 10px;
|
109 |
+
}
|
110 |
+
div.stButton > button[kind="primary"]:hover {
|
111 |
+
background-color: #E74C3C;
|
112 |
+
}
|
113 |
+
/* Clear button (gray) */
|
114 |
+
div.stButton > button[kind="secondary"][key="clear"] {
|
115 |
+
background-color: #d3d3d3;
|
116 |
+
color: #333333;
|
117 |
+
font-size: 16px;
|
118 |
+
padding: 10px 20px;
|
119 |
+
border: none;
|
120 |
+
border-radius: 5px;
|
121 |
+
}
|
122 |
+
div.stButton > button[kind="secondary"][key="clear"]:hover {
|
123 |
+
background-color: #b0b0b0;
|
124 |
+
}
|
125 |
+
/* Result boxes */
|
126 |
+
.spam-result {
|
127 |
+
background-color: #ffcccc;
|
128 |
+
padding: 10px;
|
129 |
+
border-radius: 5px;
|
130 |
+
border: 1px solid #ff9999;
|
131 |
+
}
|
132 |
+
.positive-result {
|
133 |
+
background-color: #ccffcc;
|
134 |
+
padding: 10px;
|
135 |
+
border-radius: 5px;
|
136 |
+
border: 1px solid #99cc99;
|
137 |
+
}
|
138 |
+
.negative-result {
|
139 |
+
background-color: #fff3cc;
|
140 |
+
padding: 10px;
|
141 |
+
border-radius: 5px;
|
142 |
+
border: 1px solid #ffcc66;
|
143 |
+
}
|
144 |
+
</style>
|
145 |
+
""", unsafe_allow_html=True)
|
146 |
+
|
147 |
+
# Sample buttons (in columns)
|
148 |
col1, col2, col3 = st.columns(3)
|
149 |
with col1:
|
150 |
if st.button(spam_snippet, key="spam_sample"):
|
|
|
164 |
st.session_state.result = ""
|
165 |
st.session_state.result_type = ""
|
166 |
st.rerun()
|
167 |
+
|
168 |
+
# Analyze and Clear buttons (in a row)
|
169 |
+
col_analyze, col_clear = st.columns([1, 1])
|
170 |
with col_analyze:
|
171 |
+
if st.button("Analyze Email", key="analyze", type="primary"):
|
172 |
if email_body:
|
173 |
with st.spinner("Analyzing email..."):
|
174 |
result_type, result = analyze_email(email_body)
|
|
|
177 |
else:
|
178 |
st.session_state.result = "Please enter an email body or select a sample to analyze."
|
179 |
st.session_state.result_type = ""
|
|
|
180 |
with col_clear:
|
181 |
if st.button("Clear", key="clear"):
|
182 |
st.session_state.email_body = ""
|
183 |
st.session_state.result = ""
|
184 |
st.session_state.result_type = ""
|
185 |
st.rerun()
|
186 |
+
|
187 |
+
# Display result with styled box
|
188 |
if st.session_state.result:
|
189 |
if st.session_state.result_type == "spam":
|
190 |
st.markdown(f'<div class="spam-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
|
|
193 |
elif st.session_state.result_type == "negative":
|
194 |
st.markdown(f'<div class="negative-result">{st.session_state.result}</div>', unsafe_allow_html=True)
|
195 |
else:
|
196 |
+
st.write(st.session_state.result) # For error messages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
|
198 |
if __name__ == "__main__":
|
199 |
main()
|