File size: 5,791 Bytes
f9903ea
9739fd6
 
 
f9903ea
7c483c8
c70917b
9739fd6
 
f9903ea
7c483c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c70917b
7c483c8
f9903ea
7c483c8
bfc5779
 
7c483c8
 
 
 
345319f
7c483c8
345319f
7c483c8
 
 
 
 
 
 
 
 
345319f
f9903ea
7c483c8
 
 
 
 
 
 
345319f
bfc5779
7c483c8
 
 
 
 
 
 
345319f
bfc5779
6f7d2fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
345319f
bfc5779
 
345319f
bfc5779
6f7d2fb
b4fad3e
bfc5779
345319f
bfc5779
345319f
bfc5779
 
345319f
bfc5779
345319f
bfc5779
 
6f7d2fb
 
345319f
 
 
 
 
7c483c8
 
 
b4fad3e
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import streamlit as st
from transformers import pipeline, AutoModelForSequenceClassification, AutoTokenizer
import torch
import numpy as np

def analyze_email(email_body):
    spam_pipeline = pipeline("text-classification", model="cybersectony/phishing-email-detection-distilbert_v2.4.1")
    sentiment_model = AutoModelForSequenceClassification.from_pretrained("ISOM5240GP4/email_sentiment", num_labels=2)
    tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

    spam_result = spam_pipeline(email_body)
    spam_label = spam_result[0]["label"]
    spam_confidence = spam_result[0]["score"]

    if spam_label == "LABEL_1":
        return f"This is a spam email (Confidence: {spam_confidence:.2f}). No follow-up needed."
    else:
        inputs = tokenizer(email_body, padding=True, truncation=True, return_tensors='pt')
        outputs = sentiment_model(**inputs)
        predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
        predictions = predictions.cpu().detach().numpy()
        sentiment_index = np.argmax(predictions)
        sentiment_confidence = predictions[0][sentiment_index]
        sentiment = "Positive" if sentiment_index == 1 else "Negative"

        if sentiment == "Positive":
            return (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
                    f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}). No follow-up needed.")
        else:
            return (f"This email is not spam (Confidence: {spam_confidence:.2f}).\n"
                    f"Sentiment: {sentiment} (Confidence: {sentiment_confidence:.2f}).\n"
                    "**This email needs follow-up as it is not spam and has negative sentiment.**")

def main():
    st.title("Email Analysis Tool")
    st.write("Enter an email body below or click a sample to analyze its spam status and sentiment.")

    # Initialize session state
    if "email_body" not in st.session_state:
        st.session_state.email_body = ""
    if "result" not in st.session_state:
        st.session_state.result = ""

    # Text area for email input
    email_body = st.text_area("Email Body", value=st.session_state.email_body, height=200, key="email_input")

    # Sample emails (shortened snippets for button labels)
    sample_spam = """
Subject: Urgent: Verify Your Account Now!
Dear Customer,
We have detected unusual activity on your account. To prevent suspension, please verify your login details immediately by clicking the link below:
[Click Here to Verify](http://totally-legit-site.com/verify)
Failure to verify within 24 hours will result in your account being locked. This is for your security.
Best regards,
The Security Team
    """
    spam_snippet = "Subject: Urgent: Verify Your Account Now! Dear Customer, We have detected unusual activity..."

    sample_not_spam_positive = """
Subject: Great News About Your Project!
Hi Team,
I just wanted to let you know that the project is progressing wonderfully! Everyone’s efforts are paying off, and we’re ahead of schedule. Keep up the fantastic work!
Best,
Alex
    """
    positive_snippet = "Subject: Great News About Your Project! Hi Team, I just wanted to let you know..."

    sample_not_spam_negative = """
Subject: Issue with Recent Delivery
Dear Support,
I received my package today, but it was damaged, and two items were missing. This is really frustrating—please let me know how we can resolve this as soon as possible.
Thanks,
Sarah
    """
    negative_snippet = "Subject: Issue with Recent Delivery Dear Support, I received my package today, but..."

    # Custom CSS for buttons
    st.markdown("""
        <style>
        /* Style for sample buttons (smaller text) */
        div.stButton > button[kind="secondary"] {
            font-size: 12px; /* Smaller text */
            padding: 5px 10px; /* Smaller padding */
            background-color: #f0f0f0; /* Light gray background */
            color: #333333; /* Darker text */
            border: 1px solid #cccccc;
            border-radius: 3px;
        }
        /* Style for Analyze Email button (larger, colored) */
        div.stButton > button[kind="primary"] {
            background-color: #FF5733; /* Orange color */
            color: white;
            font-size: 18px; /* Larger text */
            padding: 12px 24px; /* Larger padding */
            border: none;
            border-radius: 5px;
            display: block;
            margin-top: 15px;
        }
        div.stButton > button[kind="primary"]:hover {
            background-color: #E74C3C; /* Darker orange on hover */
        }
        </style>
    """, unsafe_allow_html=True)

    # Buttons with sample content (in columns)
    col1, col2, col3 = st.columns(3)
    with col1:
        if st.button(spam_snippet, key="spam_sample"):
            st.session_state.email_body = sample_spam
            st.session_state.result = ""
            st.rerun()
    with col2:
        if st.button(positive_snippet, key="positive_sample"):
            st.session_state.email_body = sample_not_spam_positive
            st.session_state.result = ""
            st.rerun()
    with col3:
        if st.button(negative_snippet, key="negative_sample"):
            st.session_state.email_body = sample_not_spam_negative
            st.session_state.result = ""
            st.rerun()

    # Analyze Email button (distinct style)
    if st.button("Analyze Email", key="analyze", type="primary"):
        if email_body:
            st.session_state.result = analyze_email(email_body)
        else:
            st.session_state.result = "Please enter an email body or select a sample to analyze."

    # Display result
    if st.session_state.result:
        st.write(st.session_state.result)

if __name__ == "__main__":
    main()