Spaces:
Running
Running
import os | |
import gradio as gr | |
from pydantic import BaseModel, Field | |
from langchain.prompts import HumanMessagePromptTemplate, ChatPromptTemplate | |
from langchain.output_parsers import PydanticOutputParser | |
from langchain_openai import ChatOpenAI | |
chat = ChatOpenAI() | |
# Define the Pydantic Model | |
class TextTranslator(BaseModel): | |
output: str = Field(description="Python string containing the output text translated in the desired language") | |
output_parser = PydanticOutputParser(pydantic_object=TextTranslator) | |
format_instructions = output_parser.get_format_instructions() | |
def text_translator(input_text: str, language: str) -> str: | |
try: | |
human_template = """Enter the text that you want to translate: | |
{input_text}, and enter the language that you want it to translate to {language}. {format_instructions}""" | |
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) | |
chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt]) | |
prompt = chat_prompt.format_prompt( | |
input_text=input_text, | |
language=language, | |
format_instructions=format_instructions | |
) | |
messages = prompt.to_messages() | |
response = chat(messages=messages) | |
output = output_parser.parse(response.content) | |
return output.output | |
except Exception as e: | |
return f"❌ Error: {str(e)}" | |
def text_translator_ui(): | |
with gr.Column() as translator_ui: | |
gr.HTML("<h1 align='center'>Text Translator</h1>") | |
gr.HTML("<h4 align='center'>Translate to any language</h4>") | |
input_text = gr.Textbox(label="Enter the text that you want to translate") | |
target_lang = gr.Textbox(label="Enter the language that you want it to translate to", placeholder="Example: Hindi, French, Bengali, etc") | |
generate_btn = gr.Button(value='Generate') | |
output_text = gr.Textbox(label="Translated text") | |
generate_btn.click(fn=text_translator, inputs=[input_text, target_lang], outputs=[output_text]) | |
return translator_ui |