Spaces:
Running
Running
File size: 2,092 Bytes
77ba503 66cca75 77ba503 ebc9030 66cca75 77ba503 66cca75 77ba503 66cca75 77ba503 66cca75 47b84e2 66cca75 77ba503 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import os
import gradio as gr
from pydantic import BaseModel, Field
from langchain.prompts import HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.output_parsers import PydanticOutputParser
from langchain_openai import ChatOpenAI
chat = ChatOpenAI()
# Define the Pydantic Model
class TextTranslator(BaseModel):
output: str = Field(description="Python string containing the output text translated in the desired language")
output_parser = PydanticOutputParser(pydantic_object=TextTranslator)
format_instructions = output_parser.get_format_instructions()
def text_translator(input_text: str, language: str) -> str:
try:
human_template = """Enter the text that you want to translate:
{input_text}, and enter the language that you want it to translate to {language}. {format_instructions}"""
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt])
prompt = chat_prompt.format_prompt(
input_text=input_text,
language=language,
format_instructions=format_instructions
)
messages = prompt.to_messages()
response = chat(messages=messages)
output = output_parser.parse(response.content)
return output.output
except Exception as e:
return f"❌ Error: {str(e)}"
def text_translator_ui():
with gr.Column() as translator_ui:
gr.HTML("<h1 align='center'>Text Translator</h1>")
gr.HTML("<h4 align='center'>Translate to any language</h4>")
input_text = gr.Textbox(label="Enter the text that you want to translate")
target_lang = gr.Textbox(label="Enter the language that you want it to translate to", placeholder="Example: Hindi, French, Bengali, etc")
generate_btn = gr.Button(value='Generate')
output_text = gr.Textbox(label="Translated text")
generate_btn.click(fn=text_translator, inputs=[input_text, target_lang], outputs=[output_text])
return translator_ui |