Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import os | |
import pandas as pd | |
import numpy as np | |
import joblib | |
import spacy | |
from langchain_core.pydantic_v1 import BaseModel, Field | |
from langchain.prompts import HumanMessagePromptTemplate, ChatPromptTemplate | |
from langchain.output_parsers import PydanticOutputParser | |
from langchain_openai import ChatOpenAI | |
# Set up models for each app | |
chat = ChatOpenAI() | |
classifier = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment") | |
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h") | |
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY") | |
fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone') | |
fls_model = pipeline("text-classification", model="demo-org/finbert_fls", tokenizer="demo-org/finbert_fls") | |
# --- Translator App --- | |
class TextTranslator(BaseModel): | |
output: str = Field(description="Python string containing the output text translated in the desired language") | |
output_parser = PydanticOutputParser(pydantic_object=TextTranslator) | |
format_instructions = output_parser.get_format_instructions() | |
def text_translator(input_text : str, language : str) -> str: | |
human_template = """Enter the text that you want to translate: | |
{input_text}, and enter the language that you want it to translate to {language}. {format_instructions}""" | |
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template) | |
chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt]) | |
prompt = chat_prompt.format_prompt(input_text = input_text, language = language, format_instructions = format_instructions) | |
messages = prompt.to_messages() | |
response = chat(messages = messages) | |
output = output_parser.parse(response.content) | |
output_text = output.output | |
return output_text | |
# --- Sentiment Analysis App --- | |
def sentiment_analysis(message, history): | |
result = classifier(message) | |
return f"Sentimiento : {result[0]['label']} (Probabilidad: {result[0]['score']:.2f})" | |
# --- Financial Analyst App --- | |
nlp = spacy.load('en_core_web_sm') | |
nlp.add_pipe('sentencizer') | |
def split_in_sentences(text): | |
doc = nlp(text) | |
return [str(sent).strip() for sent in doc.sents] | |
def make_spans(text, results): | |
results_list = [results[i]['label'] for i in range(len(results))] | |
return list(zip(split_in_sentences(text), results_list)) | |
def summarize_text(text): | |
resp = summarizer(text) | |
return resp[0]['summary_text'] | |
def text_to_sentiment(text): | |
sentiment = fin_model(text)[0]["label"] | |
return sentiment | |
def fin_ext(text): | |
results = fin_model(split_in_sentences(text)) | |
return make_spans(text, results) | |
def fls(text): | |
results = fls_model(split_in_sentences(text)) | |
return make_spans(text, results) | |
# --- Customer Churn App --- | |
script_dir = os.path.dirname(os.path.abspath(__file__)) | |
pipeline_path = os.path.join(script_dir, 'toolkit', 'pipeline.joblib') | |
model_path = os.path.join(script_dir, 'toolkit', 'Random Forest Classifier.joblib') | |
pipeline = joblib.load(pipeline_path) | |
model = joblib.load(model_path) | |
def calculate_total_charges(tenure, monthly_charges): | |
return tenure * monthly_charges | |
def predict(SeniorCitizen, Partner, Dependents, tenure, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, | |
TechSupport, StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges): | |
TotalCharges = calculate_total_charges(tenure, MonthlyCharges) | |
input_df = pd.DataFrame({ | |
'SeniorCitizen': [SeniorCitizen], | |
'Partner': [Partner], | |
'Dependents': [Dependents], | |
'tenure': [tenure], | |
'InternetService': [InternetService], | |
'OnlineSecurity': [OnlineSecurity], | |
'OnlineBackup': [OnlineBackup], | |
'DeviceProtection': [DeviceProtection], | |
'TechSupport': [TechSupport], | |
'StreamingTV': [StreamingTV], | |
'StreamingMovies': [StreamingMovies], | |
'Contract': [Contract], | |
'PaperlessBilling': [PaperlessBilling], | |
'PaymentMethod': [PaymentMethod], | |
'MonthlyCharges': [MonthlyCharges], | |
'TotalCharges': [TotalCharges] | |
}) | |
X_processed = pipeline.transform(input_df) | |
cat_cols = [col for col in input_df.columns if input_df[col].dtype == 'object'] | |
num_cols = [col for col in input_df.columns if input_df[col].dtype != 'object'] | |
cat_encoder = pipeline.named_steps['preprocessor'].named_transformers_['cat'].named_steps['onehot'] | |
cat_feature_names = cat_encoder.get_feature_names_out(cat_cols) | |
feature_names = num_cols + list(cat_feature_names) | |
final_df = pd.DataFrame(X_processed, columns=feature_names) | |
final_df = pd.concat([final_df.iloc[:, 3:], final_df.iloc[:, :3]], axis=1) | |
prediction_probs = model.predict_proba(final_df)[0] | |
prediction_label = { | |
"Prediction: CHURN 🔴": prediction_probs[1], | |
"Prediction: STAY ✅": prediction_probs[0] | |
} | |
return prediction_label | |
# --- Personal Information Detection App --- | |
import gradio as gr | |
gr.load("models/iiiorg/piiranha-v1-detect-personal-information").launch() | |
# --- Gradio Interface --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# All-in-One AI Apps") | |
with gr.Tab("Text Translator"): | |
gr.HTML("<h1 align='center'>Text Translator</h1>") | |
text_input = gr.Textbox(label="Enter Text") | |
language_input = gr.Textbox(label="Enter Language") | |
translate_btn = gr.Button("Translate") | |
translated_text = gr.Textbox(label="Translated Text") | |
translate_btn.click(fn=text_translator, inputs=[text_input, language_input], outputs=translated_text) | |
with gr.Tab("Sentiment Analysis"): | |
gr.Markdown("# Sentiment Analysis") | |
sentiment_input = gr.Textbox(label="Enter Message") | |
sentiment_output = gr.Textbox(label="Sentiment") | |
sentiment_btn = gr.Button("Analyze Sentiment") | |
sentiment_btn.click(fn=sentiment_analysis, inputs=sentiment_input, outputs=sentiment_output) | |
with gr.Tab("Financial Analyst"): | |
gr.Markdown("# Financial Analyst AI") | |
financial_input = gr.Textbox(label="Enter Text for Financial Analysis") | |
summarize_btn = gr.Button("Summarize") | |
sentiment_btn = gr.Button("Classify Financial Tone") | |
financial_output = gr.Textbox(label="Analysis Results") | |
summarize_btn.click(fn=summarize_text, inputs=financial_input, outputs=financial_output) | |
sentiment_btn.click(fn=text_to_sentiment, inputs=financial_input, outputs=financial_output) | |
with gr.Tab("Customer Churn Prediction"): | |
gr.Markdown("# Customer Churn Prediction") | |
churn_inputs = [ | |
gr.Radio(['Yes', 'No'], label="Are you a Seniorcitizen?"), | |
gr.Radio(['Yes', 'No'], label="Do you have a Partner?"), | |
gr.Radio(['No', 'Yes'], label="Do you have Dependents?"), | |
gr.Slider(label="Tenure (Months)", minimum=1, maximum=73), | |
gr.Radio(['DSL', 'Fiber optic', 'No Internet'], label="Internet Service"), | |
gr.Radio(['No', 'Yes'], label="Online Security"), | |
gr.Radio(['No', 'Yes'], label="Online Backup"), | |
gr.Radio(['No', 'Yes'], label="Device Protection"), | |
gr.Radio(['No', 'Yes'], label="Tech Support"), | |
gr.Radio(['No', 'Yes'], label="Streaming TV"), | |
gr.Radio(['No', 'Yes'], label="Streaming Movies"), | |
gr.Radio(['Month-to-month', 'One year', 'Two year'], label="Contract Type"), | |
gr.Radio(['Yes', 'No'], label="Paperless Billing"), | |
gr.Radio(['Electronic check', 'Mailed check', 'Bank transfer (automatic)', 'Credit card (automatic)'], label="Payment Method"), | |
gr.Slider(label="Monthly Charges", minimum=18.4, maximum=118.65) | |
] | |
churn_output = gr.Label(label="Churn Prediction") | |
churn_btn = gr.Button("Predict Churn") | |
churn_btn.click(fn=predict, inputs=churn_inputs, outputs=churn_output) | |
with gr.Tab("Personal Information Detection"): | |
gr.HTML("<h1 align='center'>Personal Information Detection</h1>") | |
gr.Interface.load("models/iiiorg/piiranha-v1-detect-personal-information").launch() | |
demo.launch(share=True) | |