File size: 8,272 Bytes
ce55ba8
564fde3
ae7f490
564fde3
 
 
ae7f490
 
 
 
 
 
564fde3
ae7f490
564fde3
 
 
 
 
ae7f490
564fde3
ae7f490
 
564fde3
ae7f490
 
 
 
564fde3
 
ae7f490
 
 
 
 
 
 
 
 
564fde3
 
 
 
ae7f490
564fde3
 
 
ae7f490
564fde3
 
 
ae7f490
564fde3
 
 
 
 
 
 
5838c29
564fde3
 
 
 
 
 
 
 
 
 
 
 
 
82c5ddf
 
 
 
 
 
 
 
 
 
564fde3
 
82c5ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564fde3
82c5ddf
 
 
 
 
 
 
 
564fde3
82c5ddf
 
 
 
 
 
 
 
564fde3
 
 
ae7f490
564fde3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import gradio as gr
from transformers import pipeline
import os
import pandas as pd
import numpy as np
import joblib
import spacy
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain.prompts import HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.output_parsers import PydanticOutputParser
from langchain_openai import ChatOpenAI

# Set up models for each app
chat = ChatOpenAI()
classifier = pipeline("sentiment-analysis", model="cardiffnlp/twitter-xlm-roberta-base-sentiment")
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
fin_model = pipeline("sentiment-analysis", model='yiyanghkust/finbert-tone', tokenizer='yiyanghkust/finbert-tone')
fls_model = pipeline("text-classification", model="demo-org/finbert_fls", tokenizer="demo-org/finbert_fls")

# --- Translator App ---
class TextTranslator(BaseModel):
    output: str = Field(description="Python string containing the output text translated in the desired language")

output_parser = PydanticOutputParser(pydantic_object=TextTranslator)
format_instructions = output_parser.get_format_instructions()

def text_translator(input_text : str, language : str) -> str:
    human_template = """Enter the text that you want to translate:
    {input_text}, and enter the language that you want it to translate to {language}. {format_instructions}"""
    human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
    chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt])
    prompt = chat_prompt.format_prompt(input_text = input_text, language = language, format_instructions = format_instructions)
    messages = prompt.to_messages()
    response = chat(messages = messages)
    output = output_parser.parse(response.content)
    output_text = output.output
    return output_text

# --- Sentiment Analysis App ---
def sentiment_analysis(message, history):
    result = classifier(message)
    return f"Sentimiento : {result[0]['label']} (Probabilidad: {result[0]['score']:.2f})"

# --- Financial Analyst App ---
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe('sentencizer')

def split_in_sentences(text):
    doc = nlp(text)
    return [str(sent).strip() for sent in doc.sents]

def make_spans(text, results):
    results_list = [results[i]['label'] for i in range(len(results))]
    return list(zip(split_in_sentences(text), results_list))

def summarize_text(text):
    resp = summarizer(text)
    return resp[0]['summary_text']

def text_to_sentiment(text):
    sentiment = fin_model(text)[0]["label"]
    return sentiment

def fin_ext(text):
    results = fin_model(split_in_sentences(text))
    return make_spans(text, results)

def fls(text):
    results = fls_model(split_in_sentences(text))
    return make_spans(text, results)

# --- Customer Churn App ---
script_dir = os.path.dirname(os.path.abspath(__file__))
pipeline_path = os.path.join(script_dir, 'toolkit', 'pipeline.joblib')
model_path = os.path.join(script_dir, 'toolkit', 'Random Forest Classifier.joblib')

pipeline = joblib.load(pipeline_path)
model = joblib.load(model_path)

def calculate_total_charges(tenure, monthly_charges):
    return tenure * monthly_charges

def predict(SeniorCitizen, Partner, Dependents, tenure, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection,
            TechSupport, StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges):
    TotalCharges = calculate_total_charges(tenure, MonthlyCharges)
    input_df = pd.DataFrame({
        'SeniorCitizen': [SeniorCitizen],
        'Partner': [Partner],
        'Dependents': [Dependents],
        'tenure': [tenure],
        'InternetService': [InternetService],
        'OnlineSecurity': [OnlineSecurity],
        'OnlineBackup': [OnlineBackup],
        'DeviceProtection': [DeviceProtection],
        'TechSupport': [TechSupport],
        'StreamingTV': [StreamingTV],
        'StreamingMovies': [StreamingMovies],
        'Contract': [Contract],
        'PaperlessBilling': [PaperlessBilling],
        'PaymentMethod': [PaymentMethod],
        'MonthlyCharges': [MonthlyCharges],
        'TotalCharges': [TotalCharges]
    })

    X_processed = pipeline.transform(input_df)
    cat_cols = [col for col in input_df.columns if input_df[col].dtype == 'object']
    num_cols = [col for col in input_df.columns if input_df[col].dtype != 'object']

    cat_encoder = pipeline.named_steps['preprocessor'].named_transformers_['cat'].named_steps['onehot']
    cat_feature_names = cat_encoder.get_feature_names_out(cat_cols)

    feature_names = num_cols + list(cat_feature_names)
    final_df = pd.DataFrame(X_processed, columns=feature_names)
    final_df = pd.concat([final_df.iloc[:, 3:], final_df.iloc[:, :3]], axis=1)

    prediction_probs = model.predict_proba(final_df)[0]
    prediction_label = {
        "Prediction: CHURN 🔴": prediction_probs[1],
        "Prediction: STAY ✅": prediction_probs[0]
    }
    return prediction_label

# --- Personal Information Detection App ---
import gradio as gr
gr.load("models/iiiorg/piiranha-v1-detect-personal-information").launch()

# --- Gradio Interface ---
with gr.Blocks() as demo:
    gr.Markdown("# All-in-One AI Apps")
    with gr.Tab("Text Translator"):
        gr.HTML("<h1 align='center'>Text Translator</h1>")
        text_input = gr.Textbox(label="Enter Text")
        language_input = gr.Textbox(label="Enter Language")
        translate_btn = gr.Button("Translate")
        translated_text = gr.Textbox(label="Translated Text")
        translate_btn.click(fn=text_translator, inputs=[text_input, language_input], outputs=translated_text)

    with gr.Tab("Sentiment Analysis"):
        gr.Markdown("# Sentiment Analysis")
        sentiment_input = gr.Textbox(label="Enter Message")
        sentiment_output = gr.Textbox(label="Sentiment")
        sentiment_btn = gr.Button("Analyze Sentiment")
        sentiment_btn.click(fn=sentiment_analysis, inputs=sentiment_input, outputs=sentiment_output)

    with gr.Tab("Financial Analyst"):
        gr.Markdown("# Financial Analyst AI")
        financial_input = gr.Textbox(label="Enter Text for Financial Analysis")
        summarize_btn = gr.Button("Summarize")
        sentiment_btn = gr.Button("Classify Financial Tone")
        financial_output = gr.Textbox(label="Analysis Results")
        summarize_btn.click(fn=summarize_text, inputs=financial_input, outputs=financial_output)
        sentiment_btn.click(fn=text_to_sentiment, inputs=financial_input, outputs=financial_output)

    with gr.Tab("Customer Churn Prediction"):
        gr.Markdown("# Customer Churn Prediction")
        churn_inputs = [
            gr.Radio(['Yes', 'No'], label="Are you a Seniorcitizen?"),
            gr.Radio(['Yes', 'No'], label="Do you have a Partner?"),
            gr.Radio(['No', 'Yes'], label="Do you have Dependents?"),
            gr.Slider(label="Tenure (Months)", minimum=1, maximum=73),
            gr.Radio(['DSL', 'Fiber optic', 'No Internet'], label="Internet Service"),
            gr.Radio(['No', 'Yes'], label="Online Security"),
            gr.Radio(['No', 'Yes'], label="Online Backup"),
            gr.Radio(['No', 'Yes'], label="Device Protection"),
            gr.Radio(['No', 'Yes'], label="Tech Support"),
            gr.Radio(['No', 'Yes'], label="Streaming TV"),
            gr.Radio(['No', 'Yes'], label="Streaming Movies"),
            gr.Radio(['Month-to-month', 'One year', 'Two year'], label="Contract Type"),
            gr.Radio(['Yes', 'No'], label="Paperless Billing"),
            gr.Radio(['Electronic check', 'Mailed check', 'Bank transfer (automatic)', 'Credit card (automatic)'], label="Payment Method"),
            gr.Slider(label="Monthly Charges", minimum=18.4, maximum=118.65)
        ]
        churn_output = gr.Label(label="Churn Prediction")
        churn_btn = gr.Button("Predict Churn")
        churn_btn.click(fn=predict, inputs=churn_inputs, outputs=churn_output)

    with gr.Tab("Personal Information Detection"):
        gr.HTML("<h1 align='center'>Personal Information Detection</h1>")
        gr.Interface.load("models/iiiorg/piiranha-v1-detect-personal-information").launch()

demo.launch(share=True)