Spaces:
Running
Running
Azie88
commited on
Commit
·
ce55ba8
1
Parent(s):
40edf7b
Gradio App w/ soft theme
Browse files
app.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import joblib, os
|
5 |
+
|
6 |
+
script_dir = os.path.dirname(os.path.abspath(__file__))
|
7 |
+
pipeline_path = os.path.join(script_dir, 'toolkit', 'pipeline.joblib')
|
8 |
+
model_path = os.path.join(script_dir, 'toolkit', 'Random Forest Classifier.joblib')
|
9 |
+
|
10 |
+
# Load transformation pipeline and model
|
11 |
+
pipeline = joblib.load(pipeline_path)
|
12 |
+
model = joblib.load(model_path)
|
13 |
+
|
14 |
+
# Create a function to calculate TotalCharges
|
15 |
+
def calculate_total_charges(tenure, monthly_charges):
|
16 |
+
return tenure * monthly_charges
|
17 |
+
|
18 |
+
# Create a function that applies the ML pipeline and makes predictions
|
19 |
+
def predict(SeniorCitizen, Partner, Dependents, tenure,
|
20 |
+
InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport,
|
21 |
+
StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod,
|
22 |
+
MonthlyCharges):
|
23 |
+
|
24 |
+
# Calculate TotalCharges
|
25 |
+
TotalCharges = calculate_total_charges(tenure, MonthlyCharges)
|
26 |
+
|
27 |
+
# Create a dataframe with the input data
|
28 |
+
input_df = pd.DataFrame({
|
29 |
+
'SeniorCitizen': [SeniorCitizen],
|
30 |
+
'Partner': [Partner],
|
31 |
+
'Dependents': [Dependents],
|
32 |
+
'tenure': [tenure],
|
33 |
+
'InternetService': [InternetService],
|
34 |
+
'OnlineSecurity': [OnlineSecurity],
|
35 |
+
'OnlineBackup': [OnlineBackup],
|
36 |
+
'DeviceProtection': [DeviceProtection],
|
37 |
+
'TechSupport': [TechSupport],
|
38 |
+
'StreamingTV': [StreamingTV],
|
39 |
+
'StreamingMovies': [StreamingMovies],
|
40 |
+
'Contract': [Contract],
|
41 |
+
'PaperlessBilling': [PaperlessBilling],
|
42 |
+
'PaymentMethod': [PaymentMethod],
|
43 |
+
'MonthlyCharges': [MonthlyCharges],
|
44 |
+
'TotalCharges': [TotalCharges]
|
45 |
+
})
|
46 |
+
|
47 |
+
# Selecting categorical and numerical columns separately
|
48 |
+
cat_cols = [col for col in input_df.columns if input_df[col].dtype == 'object']
|
49 |
+
num_cols = [col for col in input_df.columns if input_df[col].dtype != 'object']
|
50 |
+
|
51 |
+
X_processed = pipeline.transform(input_df)
|
52 |
+
|
53 |
+
# Extracting feature names for categorical columns after one-hot encoding
|
54 |
+
cat_encoder = pipeline.named_steps['preprocessor'].named_transformers_['cat'].named_steps['onehot']
|
55 |
+
cat_feature_names = cat_encoder.get_feature_names_out(cat_cols)
|
56 |
+
|
57 |
+
# Concatenating numerical and categorical feature names
|
58 |
+
feature_names = num_cols + list(cat_feature_names)
|
59 |
+
|
60 |
+
# Convert X_processed to DataFrame
|
61 |
+
final_df = pd.DataFrame(X_processed, columns=feature_names)
|
62 |
+
|
63 |
+
# Extract the first three columns and remaining columns, then merge
|
64 |
+
first_three_columns = final_df.iloc[:, :3]
|
65 |
+
remaining_columns = final_df.iloc[:, 3:]
|
66 |
+
final_df = pd.concat([remaining_columns, first_three_columns], axis=1)
|
67 |
+
|
68 |
+
# Make predictions using the model
|
69 |
+
prediction = model.predict(final_df)[0]
|
70 |
+
prediction_label = "Customer is likely to CHURN 🔴" if prediction == "Yes" else "Customer is NOT likely to CHURN ✅"
|
71 |
+
|
72 |
+
return prediction_label
|
73 |
+
|
74 |
+
input_interface = []
|
75 |
+
|
76 |
+
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
77 |
+
|
78 |
+
Title = gr.Label('Customer Churn Prediction App')
|
79 |
+
|
80 |
+
with gr.Row():
|
81 |
+
Title
|
82 |
+
|
83 |
+
with gr.Row():
|
84 |
+
gr.Markdown("This app predicts likelihood of a customer to leave or stay with the company")
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
with gr.Column():
|
88 |
+
input_interface_column_1 = [
|
89 |
+
gr.components.Radio(['Yes', 'No'], label="Are you a Seniorcitizen?"),
|
90 |
+
gr.components.Radio(['Yes', 'No'], label='Do you have Partner?'),
|
91 |
+
gr.components.Radio(['No', 'Yes'], label='Do you have any Dependents?'),
|
92 |
+
gr.components.Slider(label='Enter lenghth of Tenure in Months', minimum=1, maximum=73, step=1),
|
93 |
+
gr.components.Radio(['DSL', 'Fiber optic', 'No Internet'], label='What is your Internet Service?'),
|
94 |
+
gr.components.Radio(['No', 'Yes'], label='Do you have Online Security?'),
|
95 |
+
gr.components.Radio(['No', 'Yes'], label='Do you have Online Backup?'),
|
96 |
+
gr.components.Radio(['No', 'Yes'], label='Do you have Device Protection?')
|
97 |
+
]
|
98 |
+
|
99 |
+
with gr.Column():
|
100 |
+
input_interface_column_2 = [
|
101 |
+
gr.components.Radio(['No', 'Yes'], label='Do you have Tech Support?'),
|
102 |
+
gr.components.Radio(['No', 'Yes'], label='Do you have Streaming TV?'),
|
103 |
+
gr.components.Radio(['No', 'Yes'], label='Do you have Streaming Movies?'),
|
104 |
+
gr.components.Radio(['Month-to-month', 'One year', 'Two year'], label='What is your Contract Type?'),
|
105 |
+
gr.components.Radio(['Yes', 'No'], label='Do you prefer Paperless Billing?'),
|
106 |
+
gr.components.Radio(['Electronic check', 'Mailed check', 'Bank transfer (automatic)', 'Credit card (automatic)'], label='Which PaymentMethod do you prefer?'),
|
107 |
+
gr.components.Slider(label="Enter monthly charges", minimum=18.40, maximum=118.65)
|
108 |
+
]
|
109 |
+
|
110 |
+
with gr.Row():
|
111 |
+
input_interface.extend(input_interface_column_1)
|
112 |
+
input_interface.extend(input_interface_column_2)
|
113 |
+
|
114 |
+
with gr.Row():
|
115 |
+
predict_btn = gr.Button('Predict')
|
116 |
+
output_interface = gr.Label(label="churn")
|
117 |
+
|
118 |
+
with gr.Accordion("Open for information on inputs", open=False):
|
119 |
+
gr.Markdown("""This app receives the following as inputs and processes them to return the prediction on whether a customer, will churn or not.
|
120 |
+
|
121 |
+
- SeniorCitizen: Whether a customer is a senior citizen or not
|
122 |
+
- Partner: Whether the customer has a partner or not (Yes, No)
|
123 |
+
- Dependents: Whether the customer has dependents or not (Yes, No)
|
124 |
+
- Tenure: Number of months the customer has stayed with the company
|
125 |
+
- InternetService: Customer's internet service provider (DSL, Fiber Optic, No)
|
126 |
+
- OnlineSecurity: Whether the customer has online security or not (Yes, No, No Internet)
|
127 |
+
- OnlineBackup: Whether the customer has online backup or not (Yes, No, No Internet)
|
128 |
+
- DeviceProtection: Whether the customer has device protection or not (Yes, No, No internet service)
|
129 |
+
- TechSupport: Whether the customer has tech support or not (Yes, No, No internet)
|
130 |
+
- StreamingTV: Whether the customer has streaming TV or not (Yes, No, No internet service)
|
131 |
+
- StreamingMovies: Whether the customer has streaming movies or not (Yes, No, No Internet service)
|
132 |
+
- Contract: The contract term of the customer (Month-to-Month, One year, Two year)
|
133 |
+
- PaperlessBilling: Whether the customer has paperless billing or not (Yes, No)
|
134 |
+
- Payment Method: The customer's payment method (Electronic check, mailed check, Bank transfer(automatic), Credit card(automatic))
|
135 |
+
- MonthlyCharges: The amount charged to the customer monthly
|
136 |
+
""")
|
137 |
+
|
138 |
+
predict_btn.click(fn=predict, inputs=input_interface, outputs=output_interface)
|
139 |
+
|
140 |
+
app.launch(share=True, server_port=8080, debug=True)
|
141 |
+
|
142 |
+
# Include the custom CSS file
|
143 |
+
app.queue() # Enable queueing for shared links
|
144 |
+
app.launch(share=True, inline=False, custom_css="style.css")
|