ip-composer / app.py
linoyts's picture
linoyts HF Staff
make only concept 1 input in front tab
d827db7 verified
raw
history blame
11.8 kB
import os
import json
import torch
import gc
import numpy as np
import gradio as gr
from PIL import Image
from diffusers import StableDiffusionXLPipeline
import open_clip
from huggingface_hub import hf_hub_download
from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL
from IP_Composer.perform_swap import compute_dataset_embeds_svd, get_modified_images_embeds_composition
import spaces
import random
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize SDXL pipeline
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
add_watermarker=False,
)
# Initialize IP-Adapter
image_encoder_repo = 'h94/IP-Adapter'
image_encoder_subfolder = 'models/image_encoder'
ip_ckpt = hf_hub_download('h94/IP-Adapter', subfolder="sdxl_models", filename='ip-adapter_sdxl_vit-h.bin')
ip_model = IPAdapterXL(pipe, image_encoder_repo, image_encoder_subfolder, ip_ckpt, device)
# Initialize CLIP model
clip_model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
clip_model.to(device)
CONCEPTS_MAP={
"age": "age_descriptions.npy",
"animal fur": "fur_descriptions.npy",
"dogs": "dog_descriptions.npy",
"emotions": "emotion_descriptions.npy",
"flowers": "flower_descriptions.npy",
"fruit/vegtable": "fruit_vegetable_descriptions.npy",
"outfit type": "outfit_descriptions.npy",
"outfit pattern (including color)": "outfit_pattern_descriptions.npy",
"patterns": "pattern_descriptions.npy",
"patterns (including color)": "pattern_descriptions_with_colors.npy",
"vehicle": "vehicle_descriptions.npy",
"daytime": "times_of_day_descriptions.npy",
"pose": "person_poses_descriptions.npy",
"season": "season_descriptions.npy",
"material": "material_descriptions_with_gems.npy"
}
RANKS_MAP={
"age": 30,
"animal fur": 80,
"dogs": 30,
"emotions": 30,
"flowers": 30,
"fruit/vegtable": 30,
"outfit type": 30,
"outfit pattern (including color)": 80,
"patterns": 80,
"patterns (including color)": 80,
"vehicle": 30,
"daytime": 30,
"pose": 30,
"season": 30,
"material": 80,
}
concept_options = list(CONCEPTS_MAP.keys())
examples = [
['./IP_Composer/assets/objects/mug.png', './IP_Composer/assets/patterns/splash.png', 'patterns (including color)', None, None, None, None, 80, 30, 30, None,1.0,0, 30],
['./IP_Composer/assets/emotions/joyful.png', './IP_Composer/assets/emotions/sad.png', 'emotions', './IP_Composer/assets/age/kid.png', 'age', None, None, 30, 30, 30, None,1.0,0, 30]
]
def generate_examples(base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps):
return process_and_display(base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps)
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def change_rank_default(concept_name):
return RANKS_MAP.get(concept_name, 30)
@spaces.GPU
def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device):
"""Get CLIP image embeddings for a given PIL image"""
image = preproc(pil_image)[np.newaxis, :, :, :]
with torch.no_grad():
embeds = model.encode_image(image.to(dev))
return embeds.cpu().detach().numpy()
@spaces.GPU
def process_images(
base_image,
concept_image1, concept_name1,
concept_image2=None, concept_name2=None,
concept_image3=None, concept_name3=None,
rank1=10, rank2=10, rank3=10,
prompt=None,
scale=1.0,
seed=420,
num_inference_steps=50,
):
"""Process the base image and concept images to generate modified images"""
# Process base image
base_image_pil = Image.fromarray(base_image).convert("RGB")
base_embed = get_image_embeds(base_image_pil, clip_model, preprocess, device)
# Process concept images
concept_images = []
concept_descriptions = []
# for demo purposes we allow for up to 3 different concepts and corresponding concept images
if concept_image1 is not None:
concept_images.append(concept_image1)
concept_descriptions.append(CONCEPTS_MAP[concept_name1])
else:
return None, "Please upload at least one concept image"
# Add second concept (optional)
if concept_image2 is not None:
concept_images.append(concept_image2)
concept_descriptions.append(CONCEPTS_MAP[concept_name2])
# Add third concept (optional)
if concept_image3 is not None:
concept_images.append(concept_image3)
concept_descriptions.append(CONCEPTS_MAP[concept_name3])
# Get all ranks
ranks = [rank1]
if concept_image2 is not None:
ranks.append(rank2)
if concept_image3 is not None:
ranks.append(rank3)
concept_embeds = []
projection_matrices = []
# for the demo, we assume 1 concept image per concept
# for each concept image, we calculate it's image embeedings and load the concepts textual embeddings to copmpute the projection matrix over it
for i, concept_name in enumerate(concept_descriptions):
img_pil = Image.fromarray(concept_images[i]).convert("RGB")
concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device))
embeds_path = f"./IP_Composer/text_embeddings/{concept_name}"
with open(embeds_path, "rb") as f:
all_embeds_in = np.load(f)
projection_matrix = compute_dataset_embeds_svd(all_embeds_in, ranks[i])
projection_matrices.append(projection_matrix)
# Create projection data structure for the composition
projections_data = [
{
"embed": embed,
"projection_matrix": proj_matrix
}
for embed, proj_matrix in zip(concept_embeds, projection_matrices)
]
# Generate modified images -
modified_images = get_modified_images_embeds_composition(
base_embed,
projections_data,
ip_model,
prompt=prompt,
scale=scale,
num_samples=1,
seed=seed,
num_inference_steps=num_inference_steps
)
return modified_images[0]
def process_and_display(
base_image,
concept_image1, concept_name1="age",
concept_image2=None, concept_name2=None,
concept_image3=None, concept_name3=None,
rank1=30, rank2=30, rank3=30,
prompt=None, scale=1.0, seed=0, num_inference_steps=50,
):
if base_image is None:
raise gr.Error("please upload a base image")
if concept_image1 is None:
raise gr.Error("choose at least one concept image")
if concept_image1 is None:
raise gr.Error("choose at least one concept type")
modified_images = process_images(
base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps
)
return modified_images
# UI CSS
css = """
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(f"""# IP Composer πŸŒ…βœšπŸ–ŒοΈ
### compose new images with visual concepts
following the algorithm proposed in [*IP-Composer: Semantic Composition of Visual Concepts* by Dorfman et al.](https://arxiv.org/pdf/2502.13951)
[[project page](https://ip-composer.github.io/IP-Composer/)] [[arxiv](https://arxiv.org/pdf/2502.13951)]
""")
with gr.Row():
with gr.Column():
base_image = gr.Image(label="Base Image (Required)", type="numpy")
with gr.Tab("concept 1"):
with gr.Row():
with gr.Group():
concept_image1 = gr.Image(label="Concept Image 1", type="numpy")
concept_name1 = gr.Dropdown(concept_options, label="concept 1", value=None, info="concept type")
with gr.Tab("concept 2 - optional"):
with gr.Group():
concept_image2 = gr.Image(label="Concept Image 2", type="numpy")
concept_name2 = gr.Dropdown(concept_options, label="concept 2", value=None, info="concept type")
with gr.Tab("concept 3 - optional"):
with gr.Group():
concept_image3 = gr.Image(label="Concept Image 3", type="numpy")
concept_name3 = gr.Dropdown(concept_options, label="concept 3", value= None, info="concept type")
with gr.Accordion("Advanced options", open=False):
prompt = gr.Textbox(label="Guidance Prompt (Optional)", placeholder="Optional text prompt to guide generation")
num_inference_steps = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="num steps")
with gr.Row():
scale = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Scale")
randomize_seed = gr.Checkbox(value=True, label="Randomize seed")
seed = gr.Number(value=0, label="Seed", precision=0)
with gr.Row():
rank1 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="rank concept 1", info="rank of projection matrix")
rank2 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="rank concept 2")
rank3 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="rank concept 3")
with gr.Column():
output_image = gr.Image(label="composed output", show_label=True)
submit_btn = gr.Button("Generate")
gr.Examples(
examples,
inputs=[base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps],
outputs=[output_image],
fn=generate_examples,
cache_examples=False
)
submit_btn.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
).then(fn=process_and_display,
inputs=[
base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps
],
outputs=[output_image]
)
concept_name1.select(
fn= change_rank_default,
inputs=[concept_name1],
outputs=[rank1]
)
concept_name2.select(
fn= change_rank_default,
inputs=[concept_name2],
outputs=[rank2]
)
concept_name3.select(
fn= change_rank_default,
inputs=[concept_name3],
outputs=[rank3]
)
demo.launch()