File size: 11,819 Bytes
c20a702
 
 
 
 
 
 
 
 
 
 
 
f41b58f
0292eb7
c20a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e7580
47154ea
 
e96f400
47154ea
 
 
 
 
 
 
 
 
 
 
 
 
 
c6f871c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0e7580
c20a702
42824a3
8bb102d
ce21f0a
402de6b
8bb102d
 
 
 
 
 
 
 
bc8dd39
8bb102d
 
 
 
 
bc8dd39
8bb102d
 
 
 
42824a3
 
 
 
 
 
c6f871c
 
 
f41b58f
c20a702
 
 
 
 
 
 
f41b58f
c20a702
 
62151c8
 
 
c20a702
 
 
bc8dd39
 
c20a702
 
 
 
62151c8
c20a702
 
 
 
 
62151c8
c20a702
 
c0e7580
c20a702
 
 
 
 
 
c0e7580
c20a702
 
 
 
c0e7580
c20a702
 
 
 
 
 
 
62151c8
c20a702
 
 
62151c8
 
 
 
 
47154ea
62151c8
 
 
 
c20a702
 
62151c8
c20a702
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
039a94c
bc8dd39
c20a702
 
62151c8
c20a702
 
 
62151c8
 
 
 
bc8dd39
c20a702
 
0292eb7
c20a702
 
0292eb7
 
 
 
c20a702
 
 
62151c8
 
 
c20a702
bc8dd39
c20a702
 
 
 
42824a3
 
 
 
 
 
 
c0e7580
42824a3
 
 
74fe76b
c0e7580
2043a29
42824a3
c20a702
 
 
c6f871c
d827db7
e96f400
 
d827db7
c6f871c
 
d827db7
 
 
c6f871c
d827db7
e96f400
d827db7
c6f871c
c091a06
42824a3
 
 
402de6b
42824a3
 
b3e7963
c6f871c
 
3b94e0d
 
 
c20a702
 
c6f871c
c091a06
c20a702
8bb102d
 
 
 
 
 
 
bc8dd39
8bb102d
 
 
 
e96f400
c20a702
42824a3
 
 
 
c20a702
 
62151c8
 
 
c20a702
bc8dd39
c20a702
 
 
c6f871c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c20a702
 
 
29b1411
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
import json
import torch
import gc
import numpy as np
import gradio as gr
from PIL import Image
from diffusers import StableDiffusionXLPipeline
import open_clip
from huggingface_hub import hf_hub_download
from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL
from IP_Composer.perform_swap import compute_dataset_embeds_svd, get_modified_images_embeds_composition
import spaces
import random

device = "cuda" if torch.cuda.is_available() else "cpu"

# Initialize SDXL pipeline
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionXLPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    add_watermarker=False,
)

# Initialize IP-Adapter
image_encoder_repo = 'h94/IP-Adapter'
image_encoder_subfolder = 'models/image_encoder'
ip_ckpt = hf_hub_download('h94/IP-Adapter', subfolder="sdxl_models", filename='ip-adapter_sdxl_vit-h.bin')
ip_model = IPAdapterXL(pipe, image_encoder_repo, image_encoder_subfolder, ip_ckpt, device)

# Initialize CLIP model
clip_model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
clip_model.to(device)

CONCEPTS_MAP={
    "age": "age_descriptions.npy",
    "animal fur": "fur_descriptions.npy",
    "dogs": "dog_descriptions.npy",
    "emotions": "emotion_descriptions.npy",
    "flowers": "flower_descriptions.npy",
    "fruit/vegtable": "fruit_vegetable_descriptions.npy",
    "outfit type": "outfit_descriptions.npy",
    "outfit pattern (including color)": "outfit_pattern_descriptions.npy",
    "patterns": "pattern_descriptions.npy",
    "patterns (including color)": "pattern_descriptions_with_colors.npy",
    "vehicle": "vehicle_descriptions.npy",
    "daytime": "times_of_day_descriptions.npy",
    "pose": "person_poses_descriptions.npy",
    "season": "season_descriptions.npy",
    "material": "material_descriptions_with_gems.npy"
}
RANKS_MAP={
    "age": 30,
    "animal fur": 80,
    "dogs": 30,
    "emotions": 30,
    "flowers": 30,
    "fruit/vegtable": 30, 
    "outfit type": 30,
    "outfit pattern (including color)": 80,
    "patterns": 80,
    "patterns (including color)": 80,
    "vehicle": 30,
    "daytime": 30,
    "pose": 30,
    "season": 30,
    "material": 80,
}
concept_options = list(CONCEPTS_MAP.keys())


examples = [
    ['./IP_Composer/assets/objects/mug.png', './IP_Composer/assets/patterns/splash.png', 'patterns (including color)', None, None, None, None, 80, 30, 30, None,1.0,0, 30],
    ['./IP_Composer/assets/emotions/joyful.png', './IP_Composer/assets/emotions/sad.png', 'emotions', './IP_Composer/assets/age/kid.png', 'age', None, None, 30, 30, 30, None,1.0,0, 30]
    
]

def generate_examples(base_image, 
                      concept_image1, concept_name1,
                      concept_image2, concept_name2,
                      concept_image3, concept_name3,
                      rank1, rank2, rank3, 
                      prompt, scale, seed, num_inference_steps):
    return process_and_display(base_image, 
                      concept_image1, concept_name1,
                      concept_image2, concept_name2,
                      concept_image3, concept_name3,
                      rank1, rank2, rank3, 
                      prompt, scale, seed, num_inference_steps)



    
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def change_rank_default(concept_name):
    return RANKS_MAP.get(concept_name, 30)

@spaces.GPU
def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device):
    """Get CLIP image embeddings for a given PIL image"""
    image = preproc(pil_image)[np.newaxis, :, :, :]
    with torch.no_grad():
        embeds = model.encode_image(image.to(dev))
    return embeds.cpu().detach().numpy()

@spaces.GPU
def process_images(
    base_image, 
    concept_image1, concept_name1,
    concept_image2=None, concept_name2=None,
    concept_image3=None, concept_name3=None,
    rank1=10, rank2=10, rank3=10,
    prompt=None, 
    scale=1.0,
    seed=420,
    num_inference_steps=50,
):
    """Process the base image and concept images to generate modified images"""
    # Process base image
    base_image_pil = Image.fromarray(base_image).convert("RGB")
    base_embed = get_image_embeds(base_image_pil, clip_model, preprocess, device)
    
    # Process concept images
    concept_images = []
    concept_descriptions = []
    
    # for demo purposes we allow for up to 3 different concepts and corresponding concept images 
    if concept_image1 is not None:
        concept_images.append(concept_image1)
        concept_descriptions.append(CONCEPTS_MAP[concept_name1])
    else:
        return None, "Please upload at least one concept image"
    
    # Add second concept (optional)
    if concept_image2 is not None:
        concept_images.append(concept_image2)
        concept_descriptions.append(CONCEPTS_MAP[concept_name2])
    
    # Add third concept (optional)
    if concept_image3 is not None:
        concept_images.append(concept_image3)
        concept_descriptions.append(CONCEPTS_MAP[concept_name3])
    
    # Get all ranks
    ranks = [rank1]
    if concept_image2 is not None:
        ranks.append(rank2)
    if concept_image3 is not None:
        ranks.append(rank3)
        
    
    concept_embeds = []
    projection_matrices = []
    # for the demo, we assume 1 concept image per concept
    # for each concept image, we calculate it's image embeedings and load the concepts textual embeddings to copmpute the projection matrix over it
    for i, concept_name in enumerate(concept_descriptions):
        img_pil = Image.fromarray(concept_images[i]).convert("RGB")
        concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device))
        embeds_path = f"./IP_Composer/text_embeddings/{concept_name}"
        with open(embeds_path, "rb") as f:
            all_embeds_in = np.load(f)
        
        projection_matrix = compute_dataset_embeds_svd(all_embeds_in, ranks[i])
        projection_matrices.append(projection_matrix)
    
    
    # Create projection data structure for the composition
    projections_data = [
        {
            "embed": embed,
            "projection_matrix": proj_matrix
        }
        for embed, proj_matrix in zip(concept_embeds, projection_matrices)
    ]
    
    # Generate modified images - 
    modified_images = get_modified_images_embeds_composition(
        base_embed, 
        projections_data, 
        ip_model, 
        prompt=prompt, 
        scale=scale, 
        num_samples=1, 
        seed=seed,
        num_inference_steps=num_inference_steps
    )
    
    return modified_images[0]

def process_and_display(
    base_image, 
    concept_image1, concept_name1="age",
    concept_image2=None, concept_name2=None,
    concept_image3=None, concept_name3=None,
    rank1=30, rank2=30, rank3=30,
    prompt=None, scale=1.0, seed=0, num_inference_steps=50,
):
    if base_image is None:
        raise gr.Error("please upload a base image")
    
    if concept_image1 is None:
        raise gr.Error("choose at least one concept image")

    if concept_image1 is None:
        raise gr.Error("choose at least one concept type")
    
    modified_images = process_images(
        base_image, 
        concept_image1, concept_name1,
        concept_image2, concept_name2,
        concept_image3, concept_name3,
        rank1, rank2, rank3, 
        prompt, scale, seed, num_inference_steps
    )
    
    return modified_images

# UI CSS
css = """
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
"""

with gr.Blocks(css=css) as demo:
        gr.Markdown(f"""# IP Composer πŸŒ…βœšπŸ–ŒοΈ
### compose new images with visual concepts
following the algorithm proposed in [*IP-Composer: Semantic Composition of Visual Concepts* by Dorfman et al.](https://arxiv.org/pdf/2502.13951)

[[project page](https://ip-composer.github.io/IP-Composer/)] [[arxiv](https://arxiv.org/pdf/2502.13951)]
        """)
        
        with gr.Row():
            with gr.Column():
                base_image = gr.Image(label="Base Image (Required)", type="numpy")
                with gr.Tab("concept 1"):  
                  with gr.Row():
                      with gr.Group():
                          concept_image1 = gr.Image(label="Concept Image 1", type="numpy")
                          concept_name1 = gr.Dropdown(concept_options, label="concept 1", value=None, info="concept type")
                          
                with gr.Tab("concept 2 - optional"):            
                     with gr.Group():    
                          concept_image2 = gr.Image(label="Concept Image 2", type="numpy")
                          concept_name2 = gr.Dropdown(concept_options, label="concept 2", value=None, info="concept type")
                with gr.Tab("concept 3 - optional"):
                      with gr.Group():
                          concept_image3 = gr.Image(label="Concept Image 3", type="numpy")
                          concept_name3 = gr.Dropdown(concept_options, label="concept 3", value= None, info="concept type")
               
            
                with gr.Accordion("Advanced options", open=False):
                    prompt = gr.Textbox(label="Guidance Prompt (Optional)", placeholder="Optional text prompt to guide generation")
                    num_inference_steps = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="num steps")
                    with gr.Row():
                        scale = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Scale")
                        randomize_seed = gr.Checkbox(value=True, label="Randomize seed")
                        seed = gr.Number(value=0, label="Seed", precision=0)
                    with gr.Row():
                        rank1 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="rank concept 1", info="rank of projection matrix")
                        rank2 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="rank concept 2")
                        rank3 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="rank concept 3")
            
            with gr.Column():
                output_image = gr.Image(label="composed output", show_label=True)
                submit_btn = gr.Button("Generate")
        
        gr.Examples(
        examples,
        inputs=[base_image, 
                concept_image1, concept_name1,
                concept_image2, concept_name2,
                concept_image3, concept_name3,
                rank1, rank2, rank3, 
                prompt, scale, seed, num_inference_steps],
        outputs=[output_image],
        fn=generate_examples,
        cache_examples=False
        )
        
        submit_btn.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
        ).then(fn=process_and_display,
            inputs=[
                base_image, 
                concept_image1, concept_name1,
                concept_image2, concept_name2,
                concept_image3, concept_name3,
                rank1, rank2, rank3, 
                prompt, scale, seed, num_inference_steps
            ],
            outputs=[output_image]
        )

        concept_name1.select(
            fn= change_rank_default,
            inputs=[concept_name1],
            outputs=[rank1]
        )
        concept_name2.select(
            fn= change_rank_default,
            inputs=[concept_name2],
            outputs=[rank2]
        )
        concept_name3.select(
            fn= change_rank_default,
            inputs=[concept_name3],
            outputs=[rank3]
        )
    
    

demo.launch()