Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,819 Bytes
c20a702 f41b58f 0292eb7 c20a702 c0e7580 47154ea e96f400 47154ea c6f871c c0e7580 c20a702 42824a3 8bb102d ce21f0a 402de6b 8bb102d bc8dd39 8bb102d bc8dd39 8bb102d 42824a3 c6f871c f41b58f c20a702 f41b58f c20a702 62151c8 c20a702 bc8dd39 c20a702 62151c8 c20a702 62151c8 c20a702 c0e7580 c20a702 c0e7580 c20a702 c0e7580 c20a702 62151c8 c20a702 62151c8 47154ea 62151c8 c20a702 62151c8 c20a702 039a94c bc8dd39 c20a702 62151c8 c20a702 62151c8 bc8dd39 c20a702 0292eb7 c20a702 0292eb7 c20a702 62151c8 c20a702 bc8dd39 c20a702 42824a3 c0e7580 42824a3 74fe76b c0e7580 2043a29 42824a3 c20a702 c6f871c d827db7 e96f400 d827db7 c6f871c d827db7 c6f871c d827db7 e96f400 d827db7 c6f871c c091a06 42824a3 402de6b 42824a3 b3e7963 c6f871c 3b94e0d c20a702 c6f871c c091a06 c20a702 8bb102d bc8dd39 8bb102d e96f400 c20a702 42824a3 c20a702 62151c8 c20a702 bc8dd39 c20a702 c6f871c c20a702 29b1411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
import os
import json
import torch
import gc
import numpy as np
import gradio as gr
from PIL import Image
from diffusers import StableDiffusionXLPipeline
import open_clip
from huggingface_hub import hf_hub_download
from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL
from IP_Composer.perform_swap import compute_dataset_embeds_svd, get_modified_images_embeds_composition
import spaces
import random
device = "cuda" if torch.cuda.is_available() else "cpu"
# Initialize SDXL pipeline
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
add_watermarker=False,
)
# Initialize IP-Adapter
image_encoder_repo = 'h94/IP-Adapter'
image_encoder_subfolder = 'models/image_encoder'
ip_ckpt = hf_hub_download('h94/IP-Adapter', subfolder="sdxl_models", filename='ip-adapter_sdxl_vit-h.bin')
ip_model = IPAdapterXL(pipe, image_encoder_repo, image_encoder_subfolder, ip_ckpt, device)
# Initialize CLIP model
clip_model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
clip_model.to(device)
CONCEPTS_MAP={
"age": "age_descriptions.npy",
"animal fur": "fur_descriptions.npy",
"dogs": "dog_descriptions.npy",
"emotions": "emotion_descriptions.npy",
"flowers": "flower_descriptions.npy",
"fruit/vegtable": "fruit_vegetable_descriptions.npy",
"outfit type": "outfit_descriptions.npy",
"outfit pattern (including color)": "outfit_pattern_descriptions.npy",
"patterns": "pattern_descriptions.npy",
"patterns (including color)": "pattern_descriptions_with_colors.npy",
"vehicle": "vehicle_descriptions.npy",
"daytime": "times_of_day_descriptions.npy",
"pose": "person_poses_descriptions.npy",
"season": "season_descriptions.npy",
"material": "material_descriptions_with_gems.npy"
}
RANKS_MAP={
"age": 30,
"animal fur": 80,
"dogs": 30,
"emotions": 30,
"flowers": 30,
"fruit/vegtable": 30,
"outfit type": 30,
"outfit pattern (including color)": 80,
"patterns": 80,
"patterns (including color)": 80,
"vehicle": 30,
"daytime": 30,
"pose": 30,
"season": 30,
"material": 80,
}
concept_options = list(CONCEPTS_MAP.keys())
examples = [
['./IP_Composer/assets/objects/mug.png', './IP_Composer/assets/patterns/splash.png', 'patterns (including color)', None, None, None, None, 80, 30, 30, None,1.0,0, 30],
['./IP_Composer/assets/emotions/joyful.png', './IP_Composer/assets/emotions/sad.png', 'emotions', './IP_Composer/assets/age/kid.png', 'age', None, None, 30, 30, 30, None,1.0,0, 30]
]
def generate_examples(base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps):
return process_and_display(base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps)
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def change_rank_default(concept_name):
return RANKS_MAP.get(concept_name, 30)
@spaces.GPU
def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device):
"""Get CLIP image embeddings for a given PIL image"""
image = preproc(pil_image)[np.newaxis, :, :, :]
with torch.no_grad():
embeds = model.encode_image(image.to(dev))
return embeds.cpu().detach().numpy()
@spaces.GPU
def process_images(
base_image,
concept_image1, concept_name1,
concept_image2=None, concept_name2=None,
concept_image3=None, concept_name3=None,
rank1=10, rank2=10, rank3=10,
prompt=None,
scale=1.0,
seed=420,
num_inference_steps=50,
):
"""Process the base image and concept images to generate modified images"""
# Process base image
base_image_pil = Image.fromarray(base_image).convert("RGB")
base_embed = get_image_embeds(base_image_pil, clip_model, preprocess, device)
# Process concept images
concept_images = []
concept_descriptions = []
# for demo purposes we allow for up to 3 different concepts and corresponding concept images
if concept_image1 is not None:
concept_images.append(concept_image1)
concept_descriptions.append(CONCEPTS_MAP[concept_name1])
else:
return None, "Please upload at least one concept image"
# Add second concept (optional)
if concept_image2 is not None:
concept_images.append(concept_image2)
concept_descriptions.append(CONCEPTS_MAP[concept_name2])
# Add third concept (optional)
if concept_image3 is not None:
concept_images.append(concept_image3)
concept_descriptions.append(CONCEPTS_MAP[concept_name3])
# Get all ranks
ranks = [rank1]
if concept_image2 is not None:
ranks.append(rank2)
if concept_image3 is not None:
ranks.append(rank3)
concept_embeds = []
projection_matrices = []
# for the demo, we assume 1 concept image per concept
# for each concept image, we calculate it's image embeedings and load the concepts textual embeddings to copmpute the projection matrix over it
for i, concept_name in enumerate(concept_descriptions):
img_pil = Image.fromarray(concept_images[i]).convert("RGB")
concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device))
embeds_path = f"./IP_Composer/text_embeddings/{concept_name}"
with open(embeds_path, "rb") as f:
all_embeds_in = np.load(f)
projection_matrix = compute_dataset_embeds_svd(all_embeds_in, ranks[i])
projection_matrices.append(projection_matrix)
# Create projection data structure for the composition
projections_data = [
{
"embed": embed,
"projection_matrix": proj_matrix
}
for embed, proj_matrix in zip(concept_embeds, projection_matrices)
]
# Generate modified images -
modified_images = get_modified_images_embeds_composition(
base_embed,
projections_data,
ip_model,
prompt=prompt,
scale=scale,
num_samples=1,
seed=seed,
num_inference_steps=num_inference_steps
)
return modified_images[0]
def process_and_display(
base_image,
concept_image1, concept_name1="age",
concept_image2=None, concept_name2=None,
concept_image3=None, concept_name3=None,
rank1=30, rank2=30, rank3=30,
prompt=None, scale=1.0, seed=0, num_inference_steps=50,
):
if base_image is None:
raise gr.Error("please upload a base image")
if concept_image1 is None:
raise gr.Error("choose at least one concept image")
if concept_image1 is None:
raise gr.Error("choose at least one concept type")
modified_images = process_images(
base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps
)
return modified_images
# UI CSS
css = """
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown(f"""# IP Composer π
βποΈ
### compose new images with visual concepts
following the algorithm proposed in [*IP-Composer: Semantic Composition of Visual Concepts* by Dorfman et al.](https://arxiv.org/pdf/2502.13951)
[[project page](https://ip-composer.github.io/IP-Composer/)] [[arxiv](https://arxiv.org/pdf/2502.13951)]
""")
with gr.Row():
with gr.Column():
base_image = gr.Image(label="Base Image (Required)", type="numpy")
with gr.Tab("concept 1"):
with gr.Row():
with gr.Group():
concept_image1 = gr.Image(label="Concept Image 1", type="numpy")
concept_name1 = gr.Dropdown(concept_options, label="concept 1", value=None, info="concept type")
with gr.Tab("concept 2 - optional"):
with gr.Group():
concept_image2 = gr.Image(label="Concept Image 2", type="numpy")
concept_name2 = gr.Dropdown(concept_options, label="concept 2", value=None, info="concept type")
with gr.Tab("concept 3 - optional"):
with gr.Group():
concept_image3 = gr.Image(label="Concept Image 3", type="numpy")
concept_name3 = gr.Dropdown(concept_options, label="concept 3", value= None, info="concept type")
with gr.Accordion("Advanced options", open=False):
prompt = gr.Textbox(label="Guidance Prompt (Optional)", placeholder="Optional text prompt to guide generation")
num_inference_steps = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="num steps")
with gr.Row():
scale = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Scale")
randomize_seed = gr.Checkbox(value=True, label="Randomize seed")
seed = gr.Number(value=0, label="Seed", precision=0)
with gr.Row():
rank1 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="rank concept 1", info="rank of projection matrix")
rank2 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="rank concept 2")
rank3 = gr.Slider(minimum=1, maximum=150, value=30, step=1, label="rank concept 3")
with gr.Column():
output_image = gr.Image(label="composed output", show_label=True)
submit_btn = gr.Button("Generate")
gr.Examples(
examples,
inputs=[base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps],
outputs=[output_image],
fn=generate_examples,
cache_examples=False
)
submit_btn.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
).then(fn=process_and_display,
inputs=[
base_image,
concept_image1, concept_name1,
concept_image2, concept_name2,
concept_image3, concept_name3,
rank1, rank2, rank3,
prompt, scale, seed, num_inference_steps
],
outputs=[output_image]
)
concept_name1.select(
fn= change_rank_default,
inputs=[concept_name1],
outputs=[rank1]
)
concept_name2.select(
fn= change_rank_default,
inputs=[concept_name2],
outputs=[rank2]
)
concept_name3.select(
fn= change_rank_default,
inputs=[concept_name3],
outputs=[rank3]
)
demo.launch() |