Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse filesinitial functionality
app.py
CHANGED
@@ -30,7 +30,7 @@ ip_model = IPAdapterXL(pipe, image_encoder_repo, image_encoder_subfolder, ip_ckp
|
|
30 |
# Initialize CLIP model
|
31 |
clip_model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
|
32 |
clip_model.to(device)
|
33 |
-
print("Models initialized successfully!")
|
34 |
|
35 |
def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device):
|
36 |
"""Get CLIP image embeddings for a given PIL image"""
|
@@ -41,9 +41,9 @@ def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device
|
|
41 |
|
42 |
def process_images(
|
43 |
base_image,
|
44 |
-
concept_image1,
|
45 |
-
concept_image2=None,
|
46 |
-
concept_image3=None,
|
47 |
rank1=10, rank2=10, rank3=10,
|
48 |
prompt=None,
|
49 |
scale=1.0,
|
@@ -52,28 +52,28 @@ def process_images(
|
|
52 |
"""Process the base image and concept images to generate modified images"""
|
53 |
# Process base image
|
54 |
base_image_pil = Image.fromarray(base_image).convert("RGB")
|
55 |
-
base_embed = get_image_embeds(base_image_pil)
|
56 |
|
57 |
# Process concept images
|
58 |
concept_images = []
|
59 |
concept_descriptions = []
|
60 |
|
61 |
-
#
|
62 |
if concept_image1 is not None:
|
63 |
concept_images.append(concept_image1)
|
64 |
-
concept_descriptions.append(
|
65 |
else:
|
66 |
return None, "Please upload at least one concept image"
|
67 |
|
68 |
# Add second concept (optional)
|
69 |
if concept_image2 is not None:
|
70 |
concept_images.append(concept_image2)
|
71 |
-
concept_descriptions.append(
|
72 |
|
73 |
# Add third concept (optional)
|
74 |
if concept_image3 is not None:
|
75 |
concept_images.append(concept_image3)
|
76 |
-
concept_descriptions.append(
|
77 |
|
78 |
# Get all ranks
|
79 |
ranks = [rank1]
|
@@ -81,21 +81,23 @@ def process_images(
|
|
81 |
ranks.append(rank2)
|
82 |
if concept_image3 is not None:
|
83 |
ranks.append(rank3)
|
|
|
84 |
|
85 |
concept_embeds = []
|
86 |
-
for img in concept_images:
|
87 |
-
if img is not None:
|
88 |
-
img_pil = Image.fromarray(img).convert("RGB")
|
89 |
-
concept_embeds.append(get_image_embeds(img_pil))
|
90 |
-
|
91 |
-
# Compute projection matrices
|
92 |
projection_matrices = []
|
93 |
-
for
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
projection_matrices.append(projection_matrix)
|
98 |
|
|
|
99 |
# Create projection data structure for the composition
|
100 |
projections_data = [
|
101 |
{
|
@@ -116,14 +118,14 @@ def process_images(
|
|
116 |
seed=seed
|
117 |
)
|
118 |
|
119 |
-
return modified_images
|
120 |
|
121 |
def process_and_display(
|
122 |
base_image,
|
123 |
-
concept_image1,
|
124 |
-
concept_image2=None,
|
125 |
-
concept_image3=None,
|
126 |
-
rank1=
|
127 |
prompt=None, scale=1.0, seed=420
|
128 |
):
|
129 |
"""Wrapper for process_images that handles UI updates"""
|
@@ -135,9 +137,9 @@ def process_and_display(
|
|
135 |
|
136 |
modified_images = process_images(
|
137 |
base_image,
|
138 |
-
concept_image1,
|
139 |
-
concept_image2,
|
140 |
-
concept_image3,
|
141 |
rank1, rank2, rank3,
|
142 |
prompt, scale, seed
|
143 |
)
|
@@ -159,23 +161,23 @@ with gr.Blocks(title="Image Concept Composition") as demo:
|
|
159 |
with gr.Row():
|
160 |
with gr.Column(scale=2):
|
161 |
concept_image1 = gr.Image(label="Concept Image 1 (Required)", type="numpy")
|
162 |
-
with gr.
|
163 |
-
|
164 |
-
rank1 = gr.Slider(minimum=1, maximum=50, value=
|
165 |
|
166 |
with gr.Row():
|
167 |
with gr.Column(scale=2):
|
168 |
concept_image2 = gr.Image(label="Concept Image 2 (Optional)", type="numpy")
|
169 |
-
with gr.
|
170 |
-
|
171 |
-
rank2 = gr.Slider(minimum=1, maximum=50, value=
|
172 |
|
173 |
with gr.Row():
|
174 |
with gr.Column(scale=2):
|
175 |
concept_image3 = gr.Image(label="Concept Image 3 (Optional)", type="numpy")
|
176 |
-
with gr.
|
177 |
-
|
178 |
-
rank3 = gr.Slider(minimum=1, maximum=50, value=
|
179 |
|
180 |
prompt = gr.Textbox(label="Guidance Prompt (Optional)", placeholder="Optional text prompt to guide generation")
|
181 |
|
@@ -192,9 +194,9 @@ with gr.Blocks(title="Image Concept Composition") as demo:
|
|
192 |
fn=process_and_display,
|
193 |
inputs=[
|
194 |
base_image,
|
195 |
-
concept_image1,
|
196 |
-
concept_image2,
|
197 |
-
concept_image3,
|
198 |
rank1, rank2, rank3,
|
199 |
prompt, scale, seed
|
200 |
],
|
|
|
30 |
# Initialize CLIP model
|
31 |
clip_model, _, preprocess = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K')
|
32 |
clip_model.to(device)
|
33 |
+
# print("Models initialized successfully!")
|
34 |
|
35 |
def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device):
|
36 |
"""Get CLIP image embeddings for a given PIL image"""
|
|
|
41 |
|
42 |
def process_images(
|
43 |
base_image,
|
44 |
+
concept_image1, concept_name1,
|
45 |
+
concept_image2=None, concept_name2=None,
|
46 |
+
concept_image3=None, concept_name3=None,
|
47 |
rank1=10, rank2=10, rank3=10,
|
48 |
prompt=None,
|
49 |
scale=1.0,
|
|
|
52 |
"""Process the base image and concept images to generate modified images"""
|
53 |
# Process base image
|
54 |
base_image_pil = Image.fromarray(base_image).convert("RGB")
|
55 |
+
base_embed = get_image_embeds(base_image_pil, clip_model, preprocess, device)
|
56 |
|
57 |
# Process concept images
|
58 |
concept_images = []
|
59 |
concept_descriptions = []
|
60 |
|
61 |
+
# for demo purposes we allow for up to 3 different concepts and corresponding concept images
|
62 |
if concept_image1 is not None:
|
63 |
concept_images.append(concept_image1)
|
64 |
+
concept_descriptions.append(concept_name1)
|
65 |
else:
|
66 |
return None, "Please upload at least one concept image"
|
67 |
|
68 |
# Add second concept (optional)
|
69 |
if concept_image2 is not None:
|
70 |
concept_images.append(concept_image2)
|
71 |
+
concept_descriptions.append(concept_name2)
|
72 |
|
73 |
# Add third concept (optional)
|
74 |
if concept_image3 is not None:
|
75 |
concept_images.append(concept_image3)
|
76 |
+
concept_descriptions.append(concept_name3)
|
77 |
|
78 |
# Get all ranks
|
79 |
ranks = [rank1]
|
|
|
81 |
ranks.append(rank2)
|
82 |
if concept_image3 is not None:
|
83 |
ranks.append(rank3)
|
84 |
+
|
85 |
|
86 |
concept_embeds = []
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
projection_matrices = []
|
88 |
+
# for the demo, we assume 1 concept image per concept
|
89 |
+
# for each concept image, we calculate it's image embeedings and load the concepts textual embeddings to copmpute the projection matrix over it
|
90 |
+
for i, concept_name in enumerate(concept_descriptions):
|
91 |
+
img_pil = Image.fromarray(concept_images[i]).convert("RGB")
|
92 |
+
concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device))
|
93 |
+
embeds_path = f"./IP_Composer/text_embeddings/{concept_name}_descriptions.npy"
|
94 |
+
with open(embeds_path, "rb") as f:
|
95 |
+
all_embeds_in = np.load(f)
|
96 |
+
|
97 |
+
projection_matrix = compute_dataset_embeds_svd(all_embeds_in, ranks[i])
|
98 |
projection_matrices.append(projection_matrix)
|
99 |
|
100 |
+
|
101 |
# Create projection data structure for the composition
|
102 |
projections_data = [
|
103 |
{
|
|
|
118 |
seed=seed
|
119 |
)
|
120 |
|
121 |
+
return modified_images[0]
|
122 |
|
123 |
def process_and_display(
|
124 |
base_image,
|
125 |
+
concept_image1, concept_name1="age",
|
126 |
+
concept_image2=None, concept_name2=None,
|
127 |
+
concept_image3=None, concept_name3=None,
|
128 |
+
rank1=30, rank2=30, rank3=30,
|
129 |
prompt=None, scale=1.0, seed=420
|
130 |
):
|
131 |
"""Wrapper for process_images that handles UI updates"""
|
|
|
137 |
|
138 |
modified_images = process_images(
|
139 |
base_image,
|
140 |
+
concept_image1, concept_name1,
|
141 |
+
concept_image2, concept_name2,
|
142 |
+
concept_image3, concept_name3,
|
143 |
rank1, rank2, rank3,
|
144 |
prompt, scale, seed
|
145 |
)
|
|
|
161 |
with gr.Row():
|
162 |
with gr.Column(scale=2):
|
163 |
concept_image1 = gr.Image(label="Concept Image 1 (Required)", type="numpy")
|
164 |
+
with gr.Row():
|
165 |
+
concept_name1 = gr.Textbox(label="Concept 1 Description", placeholder="Describe this concept")
|
166 |
+
rank1 = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Rank 1")
|
167 |
|
168 |
with gr.Row():
|
169 |
with gr.Column(scale=2):
|
170 |
concept_image2 = gr.Image(label="Concept Image 2 (Optional)", type="numpy")
|
171 |
+
with gr.Row():
|
172 |
+
concept_name2 = gr.Textbox(label="Concept 2 Description", placeholder="Describe this concept")
|
173 |
+
rank2 = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Rank 2")
|
174 |
|
175 |
with gr.Row():
|
176 |
with gr.Column(scale=2):
|
177 |
concept_image3 = gr.Image(label="Concept Image 3 (Optional)", type="numpy")
|
178 |
+
with gr.Row():
|
179 |
+
concept_name3 = gr.Textbox(label="Concept 3 Description", placeholder="Describe this concept")
|
180 |
+
rank3 = gr.Slider(minimum=1, maximum=50, value=30, step=1, label="Rank 3")
|
181 |
|
182 |
prompt = gr.Textbox(label="Guidance Prompt (Optional)", placeholder="Optional text prompt to guide generation")
|
183 |
|
|
|
194 |
fn=process_and_display,
|
195 |
inputs=[
|
196 |
base_image,
|
197 |
+
concept_image1, concept_name1,
|
198 |
+
concept_image2, concept_name2,
|
199 |
+
concept_image3, concept_name3,
|
200 |
rank1, rank2, rank3,
|
201 |
prompt, scale, seed
|
202 |
],
|