IAMTFRMZA's picture
Update app.py
a86432c verified
import gradio as gr
import os, time, re, json, base64, asyncio, threading, uuid, io
import numpy as np
import soundfile as sf
from pydub import AudioSegment
from openai import OpenAI
from websockets import connect
from dotenv import load_dotenv
# Load secrets
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID")
client = OpenAI(api_key=OPENAI_API_KEY)
HEADERS = {"Authorization": f"Bearer {OPENAI_API_KEY}", "OpenAI-Beta": "realtime=v1"}
WS_URI = "wss://api.openai.com/v1/realtime?intent=transcription"
connections = {}
# WebSocket Client
class WebSocketClient:
def __init__(self, uri, headers, client_id):
self.uri = uri
self.headers = headers
self.client_id = client_id
self.websocket = None
self.queue = asyncio.Queue(maxsize=10)
self.transcript = ""
self.loop = asyncio.new_event_loop()
async def connect(self):
try:
self.websocket = await connect(self.uri, additional_headers=self.headers)
with open("openai_transcription_settings.json", "r") as f:
await self.websocket.send(f.read())
await asyncio.gather(self.receive_messages(), self.send_audio_chunks())
except Exception as e:
print(f"πŸ”΄ WebSocket Connection Failed: {e}")
def run(self):
asyncio.set_event_loop(self.loop)
self.loop.run_until_complete(self.connect())
def enqueue_audio_chunk(self, sr, arr):
if not self.queue.full():
asyncio.run_coroutine_threadsafe(self.queue.put((sr, arr)), self.loop)
async def send_audio_chunks(self):
while True:
sr, arr = await self.queue.get()
if arr.ndim > 1:
arr = arr.mean(axis=1)
if np.max(np.abs(arr)) > 0:
arr = arr / np.max(np.abs(arr))
int16 = (arr * 32767).astype(np.int16)
buf = io.BytesIO()
sf.write(buf, int16, sr, format='WAV', subtype='PCM_16')
audio = AudioSegment.from_file(buf, format="wav").set_frame_rate(24000)
out = io.BytesIO()
audio.export(out, format="wav")
out.seek(0)
await self.websocket.send(json.dumps({
"type": "input_audio_buffer.append",
"audio": base64.b64encode(out.read()).decode()
}))
async def receive_messages(self):
async for msg in self.websocket:
data = json.loads(msg)
if data["type"] == "conversation.item.input_audio_transcription.delta":
self.transcript += data["delta"]
# WebSocket Connection Manager
def create_ws():
cid = str(uuid.uuid4())
client = WebSocketClient(WS_URI, HEADERS, cid)
threading.Thread(target=client.run, daemon=True).start()
connections[cid] = client
return cid
def send_audio(chunk, cid):
if not cid or cid not in connections:
return "Connecting..."
sr, arr = chunk
connections[cid].enqueue_audio_chunk(sr, arr)
return connections[cid].transcript.strip()
def clear_transcript_only(cid):
if cid in connections:
connections[cid].transcript = ""
return ""
def clear_chat_only():
return [], None, None
# Assistant chat handler
def handle_chat(user_input, history, thread_id, image_url):
if not OPENAI_API_KEY or not ASSISTANT_ID:
return "❌ Missing secrets!", history, thread_id, image_url
try:
if thread_id is None:
thread = client.beta.threads.create()
thread_id = thread.id
client.beta.threads.messages.create(thread_id=thread_id, role="user", content=user_input)
run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=ASSISTANT_ID)
while True:
status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
if status.status == "completed":
break
time.sleep(1)
msgs = client.beta.threads.messages.list(thread_id=thread_id)
for msg in reversed(msgs.data):
if msg.role == "assistant":
content = msg.content[0].text.value
history.append((user_input, content))
match = re.search(
r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png',
content
)
if match:
image_url = match.group(0)
break
return "", history, thread_id, image_url
except Exception as e:
return f"❌ {e}", history, thread_id, image_url
# Feed transcript as assistant input
def feed_transcript(transcript, history, thread_id, image_url, cid):
if not transcript.strip():
return gr.update(), history, thread_id, image_url
if cid in connections:
connections[cid].transcript = ""
return handle_chat(transcript, history, thread_id, image_url)
# Fallback for image display
def update_image_display(image_url):
if image_url and isinstance(image_url, str) and image_url.startswith("http"):
return image_url
return None
# ============ Gradio UI ============
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# πŸ“„ Document AI Assistant")
gr.HTML("""
<style>
.big-btn {
font-size: 18px !important;
padding: 14px 28px !important;
border-radius: 8px !important;
width: 100% !important;
margin-top: 10px;
}
.voice-area {
padding-top: 12px;
border-top: 1px solid #444;
margin-top: 12px;
}
</style>
""")
chat_state = gr.State([])
thread_state = gr.State()
image_state = gr.State()
client_id = gr.State()
with gr.Row(equal_height=True):
with gr.Column(scale=1):
image_display = gr.Image(label="πŸ–ΌοΈ Document", type="filepath", show_download_button=False)
with gr.Column(scale=1.4):
chat = gr.Chatbot(label="πŸ’¬ Chat", height=460)
with gr.Row():
user_prompt = gr.Textbox(placeholder="Ask your question...", show_label=False, scale=8)
send_btn = gr.Button("Send", variant="primary", scale=2)
with gr.Column(elem_classes="voice-area"):
gr.Markdown("### πŸŽ™οΈ Voice Input")
voice_input = gr.Audio(label="Tap to Record", streaming=True, type="numpy", show_label=True)
voice_transcript = gr.Textbox(label="Transcript", lines=2, interactive=False)
with gr.Row():
voice_send_btn = gr.Button("🟒 Send Voice to Assistant", elem_classes="big-btn")
clear_transcript_btn = gr.Button("🧹 Clear Transcript", elem_classes="big-btn")
with gr.Row():
clear_chat_btn = gr.Button("πŸ—‘οΈ Clear Chat", elem_classes="big-btn")
# Bindings
send_btn.click(fn=handle_chat,
inputs=[user_prompt, chat_state, thread_state, image_state],
outputs=[user_prompt, chat, thread_state, image_state])
voice_input.stream(fn=send_audio,
inputs=[voice_input, client_id],
outputs=voice_transcript,
stream_every=0.5)
voice_send_btn.click(fn=feed_transcript,
inputs=[voice_transcript, chat_state, thread_state, image_state, client_id],
outputs=[user_prompt, chat, thread_state, image_state])
clear_transcript_btn.click(fn=clear_transcript_only,
inputs=[client_id],
outputs=voice_transcript)
clear_chat_btn.click(fn=clear_chat_only,
outputs=[chat, thread_state, image_state])
image_state.change(fn=update_image_display,
inputs=image_state,
outputs=image_display)
app.load(fn=create_ws, outputs=[client_id])
app.launch()