Spaces:
Running
Running
File size: 8,047 Bytes
9457397 fa361c9 b106fa1 9457397 fa361c9 e24f5bc fa361c9 f5736a5 bafde5e fa361c9 2e95bed d13b654 9457397 fa361c9 bafde5e fa361c9 9457397 e4de5ab e24f5bc 9457397 e24f5bc 65aa40f 9457397 e24f5bc 9457397 fa361c9 e24f5bc fa361c9 e24f5bc fa361c9 e24f5bc d69e46f 9457397 fa361c9 9457397 a86432c fa361c9 e24f5bc fa361c9 a86432c fa361c9 a86432c e24f5bc 6a70fff a86432c fa361c9 dbf9e7a eb248c8 fa361c9 2e95bed fa361c9 2e95bed fa361c9 a86432c fa361c9 d13b654 d69e46f 65aa40f d69e46f a86432c fa361c9 a86432c d13b654 dbf9e7a fa361c9 e0cd5da fa361c9 d69e46f fa361c9 d69e46f d13b654 d69e46f e0cd5da d69e46f e0cd5da d69e46f e0cd5da a86432c d13b654 a86432c d69e46f dbf9e7a e0cd5da a86432c e0cd5da a86432c e0cd5da d69e46f fa361c9 e0cd5da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
import gradio as gr
import os, time, re, json, base64, asyncio, threading, uuid, io
import numpy as np
import soundfile as sf
from pydub import AudioSegment
from openai import OpenAI
from websockets import connect
from dotenv import load_dotenv
# Load secrets
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID")
client = OpenAI(api_key=OPENAI_API_KEY)
HEADERS = {"Authorization": f"Bearer {OPENAI_API_KEY}", "OpenAI-Beta": "realtime=v1"}
WS_URI = "wss://api.openai.com/v1/realtime?intent=transcription"
connections = {}
# WebSocket Client
class WebSocketClient:
def __init__(self, uri, headers, client_id):
self.uri = uri
self.headers = headers
self.client_id = client_id
self.websocket = None
self.queue = asyncio.Queue(maxsize=10)
self.transcript = ""
self.loop = asyncio.new_event_loop()
async def connect(self):
try:
self.websocket = await connect(self.uri, additional_headers=self.headers)
with open("openai_transcription_settings.json", "r") as f:
await self.websocket.send(f.read())
await asyncio.gather(self.receive_messages(), self.send_audio_chunks())
except Exception as e:
print(f"๐ด WebSocket Connection Failed: {e}")
def run(self):
asyncio.set_event_loop(self.loop)
self.loop.run_until_complete(self.connect())
def enqueue_audio_chunk(self, sr, arr):
if not self.queue.full():
asyncio.run_coroutine_threadsafe(self.queue.put((sr, arr)), self.loop)
async def send_audio_chunks(self):
while True:
sr, arr = await self.queue.get()
if arr.ndim > 1:
arr = arr.mean(axis=1)
if np.max(np.abs(arr)) > 0:
arr = arr / np.max(np.abs(arr))
int16 = (arr * 32767).astype(np.int16)
buf = io.BytesIO()
sf.write(buf, int16, sr, format='WAV', subtype='PCM_16')
audio = AudioSegment.from_file(buf, format="wav").set_frame_rate(24000)
out = io.BytesIO()
audio.export(out, format="wav")
out.seek(0)
await self.websocket.send(json.dumps({
"type": "input_audio_buffer.append",
"audio": base64.b64encode(out.read()).decode()
}))
async def receive_messages(self):
async for msg in self.websocket:
data = json.loads(msg)
if data["type"] == "conversation.item.input_audio_transcription.delta":
self.transcript += data["delta"]
# WebSocket Connection Manager
def create_ws():
cid = str(uuid.uuid4())
client = WebSocketClient(WS_URI, HEADERS, cid)
threading.Thread(target=client.run, daemon=True).start()
connections[cid] = client
return cid
def send_audio(chunk, cid):
if not cid or cid not in connections:
return "Connecting..."
sr, arr = chunk
connections[cid].enqueue_audio_chunk(sr, arr)
return connections[cid].transcript.strip()
def clear_transcript_only(cid):
if cid in connections:
connections[cid].transcript = ""
return ""
def clear_chat_only():
return [], None, None
# Assistant chat handler
def handle_chat(user_input, history, thread_id, image_url):
if not OPENAI_API_KEY or not ASSISTANT_ID:
return "โ Missing secrets!", history, thread_id, image_url
try:
if thread_id is None:
thread = client.beta.threads.create()
thread_id = thread.id
client.beta.threads.messages.create(thread_id=thread_id, role="user", content=user_input)
run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=ASSISTANT_ID)
while True:
status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
if status.status == "completed":
break
time.sleep(1)
msgs = client.beta.threads.messages.list(thread_id=thread_id)
for msg in reversed(msgs.data):
if msg.role == "assistant":
content = msg.content[0].text.value
history.append((user_input, content))
match = re.search(
r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png',
content
)
if match:
image_url = match.group(0)
break
return "", history, thread_id, image_url
except Exception as e:
return f"โ {e}", history, thread_id, image_url
# Feed transcript as assistant input
def feed_transcript(transcript, history, thread_id, image_url, cid):
if not transcript.strip():
return gr.update(), history, thread_id, image_url
if cid in connections:
connections[cid].transcript = ""
return handle_chat(transcript, history, thread_id, image_url)
# Fallback for image display
def update_image_display(image_url):
if image_url and isinstance(image_url, str) and image_url.startswith("http"):
return image_url
return None
# ============ Gradio UI ============
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# ๐ Document AI Assistant")
gr.HTML("""
<style>
.big-btn {
font-size: 18px !important;
padding: 14px 28px !important;
border-radius: 8px !important;
width: 100% !important;
margin-top: 10px;
}
.voice-area {
padding-top: 12px;
border-top: 1px solid #444;
margin-top: 12px;
}
</style>
""")
chat_state = gr.State([])
thread_state = gr.State()
image_state = gr.State()
client_id = gr.State()
with gr.Row(equal_height=True):
with gr.Column(scale=1):
image_display = gr.Image(label="๐ผ๏ธ Document", type="filepath", show_download_button=False)
with gr.Column(scale=1.4):
chat = gr.Chatbot(label="๐ฌ Chat", height=460)
with gr.Row():
user_prompt = gr.Textbox(placeholder="Ask your question...", show_label=False, scale=8)
send_btn = gr.Button("Send", variant="primary", scale=2)
with gr.Column(elem_classes="voice-area"):
gr.Markdown("### ๐๏ธ Voice Input")
voice_input = gr.Audio(label="Tap to Record", streaming=True, type="numpy", show_label=True)
voice_transcript = gr.Textbox(label="Transcript", lines=2, interactive=False)
with gr.Row():
voice_send_btn = gr.Button("๐ข Send Voice to Assistant", elem_classes="big-btn")
clear_transcript_btn = gr.Button("๐งน Clear Transcript", elem_classes="big-btn")
with gr.Row():
clear_chat_btn = gr.Button("๐๏ธ Clear Chat", elem_classes="big-btn")
# Bindings
send_btn.click(fn=handle_chat,
inputs=[user_prompt, chat_state, thread_state, image_state],
outputs=[user_prompt, chat, thread_state, image_state])
voice_input.stream(fn=send_audio,
inputs=[voice_input, client_id],
outputs=voice_transcript,
stream_every=0.5)
voice_send_btn.click(fn=feed_transcript,
inputs=[voice_transcript, chat_state, thread_state, image_state, client_id],
outputs=[user_prompt, chat, thread_state, image_state])
clear_transcript_btn.click(fn=clear_transcript_only,
inputs=[client_id],
outputs=voice_transcript)
clear_chat_btn.click(fn=clear_chat_only,
outputs=[chat, thread_state, image_state])
image_state.change(fn=update_image_display,
inputs=image_state,
outputs=image_display)
app.load(fn=create_ws, outputs=[client_id])
app.launch()
|