Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,145 +1,164 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
3 |
import numpy as np
|
|
|
4 |
import soundfile as sf
|
|
|
5 |
from pydub import AudioSegment
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
HEADERS = {"Authorization": f"Bearer {OPENAI_API_KEY}", "OpenAI-Beta": "realtime=v1"}
|
17 |
-
WS_URI = "wss://api.openai.com/v1/realtime?intent=transcription"
|
18 |
connections = {}
|
19 |
|
20 |
-
# ---------------- WebSocket Client for Voice ----------------
|
21 |
class WebSocketClient:
|
22 |
-
def __init__(self, uri, headers, client_id):
|
23 |
-
self.uri
|
24 |
-
self.
|
|
|
25 |
self.queue = asyncio.Queue(maxsize=10)
|
|
|
|
|
26 |
self.transcript = ""
|
27 |
|
28 |
async def connect(self):
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
def run(self):
|
35 |
-
loop = asyncio.new_event_loop()
|
36 |
-
asyncio.set_event_loop(loop)
|
37 |
-
loop.run_until_complete(self.connect())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
async def send_audio_chunks(self):
|
40 |
while True:
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
async def receive_messages(self):
|
51 |
-
async for
|
52 |
-
|
53 |
-
if data["type"] == "conversation.item.input_audio_transcription.delta":
|
54 |
-
self.transcript += data["delta"]
|
55 |
|
56 |
-
def enqueue_audio_chunk(self,
|
57 |
if not self.queue.full():
|
58 |
-
asyncio.run_coroutine_threadsafe(self.queue.put((
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
connections
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
return ""
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
|
87 |
-
client.beta.threads.messages.create(thread_id=thread_id, role="user", content=user_input)
|
88 |
-
run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=ASSISTANT_ID)
|
89 |
|
90 |
-
while True:
|
91 |
-
status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
|
92 |
-
if status.status == "completed": break
|
93 |
-
time.sleep(1)
|
94 |
-
|
95 |
-
msgs = client.beta.threads.messages.list(thread_id=thread_id)
|
96 |
-
for msg in reversed(msgs.data):
|
97 |
-
if msg.role == "assistant":
|
98 |
-
content = msg.content[0].text.value
|
99 |
-
history.append((user_input, content))
|
100 |
-
match = re.search(r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png', content)
|
101 |
-
if match: image_url = match.group(0)
|
102 |
-
break
|
103 |
-
|
104 |
-
return "", history, thread_id, image_url
|
105 |
-
|
106 |
-
except Exception as e:
|
107 |
-
return f"❌ {e}", history, thread_id, image_url
|
108 |
-
|
109 |
-
# ---------------- Gradio UI Layout ----------------
|
110 |
-
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
111 |
-
gr.Markdown("# 📄 Document AI Assistant")
|
112 |
-
|
113 |
-
# STATES
|
114 |
-
chat_state = gr.State([])
|
115 |
-
thread_state = gr.State()
|
116 |
-
image_state = gr.State()
|
117 |
-
client_id = gr.State()
|
118 |
-
|
119 |
-
with gr.Row():
|
120 |
-
with gr.Column(scale=1):
|
121 |
-
# IMAGE VIEWER (left)
|
122 |
-
image_display = gr.Image(label="🖼️ Document", type="filepath")
|
123 |
-
|
124 |
-
# VOICE (under)
|
125 |
-
voice_transcript = gr.Textbox(label="🎙️ Transcript", lines=4, interactive=False)
|
126 |
-
voice_input = gr.Audio(label="🔴 Record", streaming=True)
|
127 |
-
clear_btn = gr.Button("🧹 Clear Transcript")
|
128 |
-
|
129 |
-
with gr.Column(scale=2):
|
130 |
-
# CHATBOT (right)
|
131 |
-
chat = gr.Chatbot(label="💬 Chat", height=450)
|
132 |
-
user_prompt = gr.Textbox(show_label=False, placeholder="Ask your question...")
|
133 |
-
send_btn = gr.Button("Send")
|
134 |
-
|
135 |
-
# HANDLERS
|
136 |
-
send_btn.click(handle_chat,
|
137 |
-
inputs=[user_prompt, chat_state, thread_state, image_state],
|
138 |
-
outputs=[user_prompt, chat, thread_state, image_state])
|
139 |
-
|
140 |
-
image_state.change(fn=lambda x: x, inputs=image_state, outputs=image_display)
|
141 |
-
voice_input.stream(fn=send_audio, inputs=[voice_input, client_id], outputs=voice_transcript, stream_every=0.5)
|
142 |
-
clear_btn.click(fn=clear_transcript, inputs=[client_id], outputs=voice_transcript)
|
143 |
-
app.load(create_ws, outputs=[client_id])
|
144 |
-
|
145 |
-
app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import asyncio
|
3 |
+
from websockets import connect, Data, ClientConnection
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
import threading
|
8 |
import numpy as np
|
9 |
+
import base64
|
10 |
import soundfile as sf
|
11 |
+
import io
|
12 |
from pydub import AudioSegment
|
13 |
+
import time
|
14 |
+
import uuid
|
15 |
+
|
16 |
+
class LogColors:
|
17 |
+
OK = '\033[94m'
|
18 |
+
SUCCESS = '\033[92m'
|
19 |
+
WARNING = '\033[93m'
|
20 |
+
ERROR = '\033[91m'
|
21 |
+
ENDC = '\033[0m'
|
22 |
+
|
23 |
+
load_dotenv()
|
24 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
25 |
+
if not OPENAI_API_KEY:
|
26 |
+
raise ValueError("OPENAI_API_KEY environment variable must be set")
|
27 |
+
|
28 |
+
WEBSOCKET_URI = "wss://api.openai.com/v1/realtime?intent=transcription"
|
29 |
+
WEBSOCKET_HEADERS = {
|
30 |
+
"Authorization": "Bearer " + OPENAI_API_KEY,
|
31 |
+
"OpenAI-Beta": "realtime=v1"
|
32 |
+
}
|
33 |
+
|
34 |
+
css = """
|
35 |
+
"""
|
36 |
|
|
|
|
|
37 |
connections = {}
|
38 |
|
|
|
39 |
class WebSocketClient:
|
40 |
+
def __init__(self, uri: str, headers: dict, client_id: str):
|
41 |
+
self.uri = uri
|
42 |
+
self.headers = headers
|
43 |
+
self.websocket: ClientConnection = None
|
44 |
self.queue = asyncio.Queue(maxsize=10)
|
45 |
+
self.loop = None
|
46 |
+
self.client_id = client_id
|
47 |
self.transcript = ""
|
48 |
|
49 |
async def connect(self):
|
50 |
+
try:
|
51 |
+
self.websocket = await connect(self.uri, additional_headers=self.headers)
|
52 |
+
print(f"{LogColors.SUCCESS}Connected to OpenAI WebSocket{LogColors.ENDC}\n")
|
53 |
+
|
54 |
+
# Send session settings to OpenAI
|
55 |
+
with open("openai_transcription_settings.json", "r") as f:
|
56 |
+
settings = f.read()
|
57 |
+
await self.websocket.send(settings)
|
58 |
+
|
59 |
+
await asyncio.gather(self.receive_messages(), self.send_audio_chunks())
|
60 |
+
except Exception as e:
|
61 |
+
print(f"{LogColors.ERROR}WebSocket Connection Error: {e}{LogColors.ENDC}")
|
62 |
|
63 |
def run(self):
|
64 |
+
self.loop = asyncio.new_event_loop()
|
65 |
+
asyncio.set_event_loop(self.loop)
|
66 |
+
self.loop.run_until_complete(self.connect())
|
67 |
+
|
68 |
+
def process_websocket_message(self, message: Data):
|
69 |
+
message_object = json.loads(message)
|
70 |
+
if message_object["type"] != "error":
|
71 |
+
print(f"{LogColors.OK}Received message: {LogColors.ENDC} {message}")
|
72 |
+
if message_object["type"] == "conversation.item.input_audio_transcription.delta":
|
73 |
+
delta = message_object["delta"]
|
74 |
+
self.transcript += delta
|
75 |
+
elif message_object["type"] == "conversation.item.input_audio_transcription.completed":
|
76 |
+
self.transcript += ' ' if len(self.transcript) and self.transcript[-1] != ' ' else ''
|
77 |
+
else:
|
78 |
+
print(f"{LogColors.ERROR}Error: {message}{LogColors.ENDC}")
|
79 |
|
80 |
async def send_audio_chunks(self):
|
81 |
while True:
|
82 |
+
audio_data = await self.queue.get()
|
83 |
+
sample_rate, audio_array = audio_data
|
84 |
+
if self.websocket:
|
85 |
+
# Convert to mono if stereo
|
86 |
+
if audio_array.ndim > 1:
|
87 |
+
audio_array = audio_array.mean(axis=1)
|
88 |
+
|
89 |
+
# Convert to float32 and normalize
|
90 |
+
audio_array = audio_array.astype(np.float32)
|
91 |
+
audio_array /= np.max(np.abs(audio_array)) if np.max(np.abs(audio_array)) > 0 else 1.0
|
92 |
+
|
93 |
+
# Convert to 16-bit PCM
|
94 |
+
audio_array_int16 = (audio_array * 32767).astype(np.int16)
|
95 |
+
|
96 |
+
audio_buffer = io.BytesIO()
|
97 |
+
sf.write(audio_buffer, audio_array_int16, sample_rate, format='WAV', subtype='PCM_16')
|
98 |
+
audio_buffer.seek(0)
|
99 |
+
audio_segment = AudioSegment.from_file(audio_buffer, format="wav")
|
100 |
+
resampled_audio = audio_segment.set_frame_rate(24000)
|
101 |
+
|
102 |
+
output_buffer = io.BytesIO()
|
103 |
+
resampled_audio.export(output_buffer, format="wav")
|
104 |
+
output_buffer.seek(0)
|
105 |
+
base64_audio = base64.b64encode(output_buffer.read()).decode("utf-8")
|
106 |
+
|
107 |
+
await self.websocket.send(json.dumps({"type": "input_audio_buffer.append", "audio": base64_audio}))
|
108 |
+
print(f"{LogColors.OK}Sent audio chunk{LogColors.ENDC}")
|
109 |
|
110 |
async def receive_messages(self):
|
111 |
+
async for message in self.websocket:
|
112 |
+
self.process_websocket_message(message)
|
|
|
|
|
113 |
|
114 |
+
def enqueue_audio_chunk(self, sample_rate: int, chunk_array: np.ndarray):
|
115 |
if not self.queue.full():
|
116 |
+
asyncio.run_coroutine_threadsafe(self.queue.put((sample_rate, chunk_array)), self.loop)
|
117 |
+
else:
|
118 |
+
print(f"{LogColors.WARNING}Queue is full, dropping audio chunk{LogColors.ENDC}")
|
119 |
+
|
120 |
+
async def close(self):
|
121 |
+
if self.websocket:
|
122 |
+
await self.websocket.close()
|
123 |
+
connections.pop(self.client_id)
|
124 |
+
print(f"{LogColors.WARNING}WebSocket connection closed{LogColors.ENDC}")
|
125 |
+
|
126 |
+
|
127 |
+
def send_audio_chunk(new_chunk: gr.Audio, client_id: str):
|
128 |
+
if client_id not in connections:
|
129 |
+
return "Connection is being established, please try again in a few seconds."
|
130 |
+
sr, y = new_chunk
|
131 |
+
connections[client_id].enqueue_audio_chunk(sr, y)
|
132 |
+
return connections[client_id].transcript
|
133 |
+
|
134 |
+
def create_new_websocket_connection():
|
135 |
+
client_id = str(uuid.uuid4())
|
136 |
+
connections[client_id] = WebSocketClient(WEBSOCKET_URI, WEBSOCKET_HEADERS, client_id)
|
137 |
+
threading.Thread(target=connections[client_id].run, daemon=True).start()
|
138 |
+
return client_id
|
139 |
+
|
140 |
+
def clear_transcript(client_id):
|
141 |
+
if client_id in connections:
|
142 |
+
connections[client_id].transcript = ""
|
143 |
return ""
|
144 |
|
145 |
+
if __name__ == "__main__":
|
146 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
147 |
+
gr.Markdown(f"# Realtime transcription demo")
|
148 |
+
with gr.Row():
|
149 |
+
with gr.Column():
|
150 |
+
output_textbox = gr.Textbox(label="Transcript", value="", lines=7, interactive=False, autoscroll=True)
|
151 |
+
with gr.Row():
|
152 |
+
with gr.Column(scale=5):
|
153 |
+
audio_input = gr.Audio(streaming=True, format="wav")
|
154 |
+
with gr.Column():
|
155 |
+
clear_button = gr.Button("Clear")
|
156 |
|
157 |
+
client_id = gr.State()
|
158 |
+
clear_button.click(clear_transcript, inputs=[client_id], outputs=[output_textbox])
|
159 |
+
audio_input.stream(send_audio_chunk, [audio_input, client_id], [output_textbox], stream_every=0.5, concurrency_limit=None)
|
160 |
+
demo.load(create_new_websocket_connection, outputs=[client_id])
|
161 |
+
|
162 |
+
demo.launch()
|
163 |
|
|
|
|
|
164 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|