IAMTFRMZA's picture
Update app.py
c9731af verified
raw
history blame
7.95 kB
import gradio as gr
import os, time, re, json, base64, asyncio, threading, uuid, io
import numpy as np
import soundfile as sf
from pydub import AudioSegment
from openai import OpenAI
from websockets import connect
from dotenv import load_dotenv
# Load secrets
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID")
client = OpenAI(api_key=OPENAI_API_KEY)
HEADERS = {"Authorization": f"Bearer {OPENAI_API_KEY}", "OpenAI-Beta": "realtime=v1"}
WS_URI = "wss://api.openai.com/v1/realtime?intent=transcription"
connections = {}
# WebSocket Client
class WebSocketClient:
def __init__(self, uri, headers, client_id):
self.uri = uri
self.headers = headers
self.client_id = client_id
self.websocket = None
self.queue = asyncio.Queue(maxsize=10)
self.transcript = ""
self.loop = asyncio.new_event_loop()
async def connect(self):
try:
self.websocket = await connect(self.uri, additional_headers=self.headers)
with open("openai_transcription_settings.json", "r") as f:
await self.websocket.send(f.read())
await asyncio.gather(self.receive_messages(), self.send_audio_chunks())
except Exception as e:
print(f"πŸ”΄ WebSocket Connection Failed: {e}")
def run(self):
asyncio.set_event_loop(self.loop)
self.loop.run_until_complete(self.connect())
def enqueue_audio_chunk(self, sr, arr):
if not self.queue.full():
asyncio.run_coroutine_threadsafe(self.queue.put((sr, arr)), self.loop)
async def send_audio_chunks(self):
while True:
sr, arr = await self.queue.get()
if arr.ndim > 1:
arr = arr.mean(axis=1)
if np.max(np.abs(arr)) > 0:
arr = arr / np.max(np.abs(arr))
int16 = (arr * 32767).astype(np.int16)
buf = io.BytesIO()
sf.write(buf, int16, sr, format='WAV', subtype='PCM_16')
audio = AudioSegment.from_file(buf, format="wav").set_frame_rate(24000)
out = io.BytesIO()
audio.export(out, format="wav")
out.seek(0)
await self.websocket.send(json.dumps({
"type": "input_audio_buffer.append",
"audio": base64.b64encode(out.read()).decode()
}))
async def receive_messages(self):
async for msg in self.websocket:
data = json.loads(msg)
if data["type"] == "conversation.item.input_audio_transcription.delta":
self.transcript += data["delta"]
# Connection manager
def create_ws():
cid = str(uuid.uuid4())
client = WebSocketClient(WS_URI, HEADERS, cid)
threading.Thread(target=client.run, daemon=True).start()
connections[cid] = client
return cid
def send_audio(chunk, cid):
if not cid or cid not in connections:
return "Connecting..."
sr, arr = chunk
if len(connections[cid].transcript) > 1000:
connections[cid].transcript = ""
connections[cid].enqueue_audio_chunk(sr, arr)
return connections[cid].transcript.strip()
def clear_transcript(cid):
if cid in connections:
connections[cid].transcript = ""
return ""
def handle_chat(user_input, history, thread_id, image_url):
if not OPENAI_API_KEY or not ASSISTANT_ID:
return "❌ Missing secrets!", history, thread_id, image_url
try:
if thread_id is None:
thread = client.beta.threads.create()
thread_id = thread.id
client.beta.threads.messages.create(thread_id=thread_id, role="user", content=user_input)
run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=ASSISTANT_ID)
while True:
status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
if status.status == "completed": break
time.sleep(1)
msgs = client.beta.threads.messages.list(thread_id=thread_id)
for msg in reversed(msgs.data):
if msg.role == "assistant":
content = msg.content[0].text.value
history.append({"role": "user", "content": user_input})
history.append({"role": "assistant", "content": content})
match = re.search(
r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png',
content
)
if match: image_url = match.group(0)
break
return "", history, thread_id, image_url
except Exception as e:
return f"❌ {e}", history, thread_id, image_url
def send_transcript_to_assistant(transcript, history, thread_id, image_url, cid):
if not transcript.strip():
return gr.update(), history, thread_id, image_url
if cid in connections:
connections[cid].transcript = ""
return handle_chat(transcript, history, thread_id, image_url)
def clear_chat_and_transcript(client_id):
if client_id in connections:
connections[client_id].transcript = ""
return [], "", None, None
# UI
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# πŸ“„ Document AI Assistant")
gr.HTML("""
<style>
#ask-btn, #clear-chat-btn, #record-audio button {
font-size: 16px !important;
padding: 12px 28px !important;
border-radius: 6px;
margin-top: 10px;
background-color: #f2f2f2 !important;
color: #000 !important;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
button {
margin-right: 8px;
}
/* Hide icon (optional) */
#record-audio button svg {
margin-right: 6px;
}
/* Hide internal label if redundant */
#record-audio label {
display: none;
}
</style>
""")
chat_state = gr.State([])
thread_state = gr.State()
image_state = gr.State()
client_id = gr.State()
with gr.Row(equal_height=True):
with gr.Column(scale=1):
image_display = gr.Image(label="πŸ–ΌοΈ Document", type="filepath", show_download_button=False)
with gr.Column(scale=2):
chat = gr.Chatbot(label="πŸ’¬ Chat", height=460, type="messages")
with gr.Row():
user_prompt = gr.Textbox(placeholder="Ask your question...", show_label=False, scale=6)
send_btn = gr.Button("Send", variant="primary", scale=2)
with gr.Accordion("🎀 Voice Transcription", open=False) as voice_section:
gr.Markdown("**πŸŽ™οΈ Tap below to record your voice**")
voice_input = gr.Audio(label="", streaming=True, elem_id="record-audio")
voice_transcript = gr.Textbox(label="Transcript", lines=2, interactive=False)
with gr.Row():
ask_btn = gr.Button("🟒 Ask", elem_id="ask-btn")
clear_chat_btn = gr.Button("🧹 Clear Chat", elem_id="clear-chat-btn")
# Bindings
send_btn.click(fn=handle_chat,
inputs=[user_prompt, chat_state, thread_state, image_state],
outputs=[user_prompt, chat, thread_state, image_state])
image_state.change(fn=lambda x: x, inputs=image_state, outputs=image_display)
voice_input.stream(fn=send_audio, inputs=[voice_input, client_id], outputs=voice_transcript, stream_every=0.5)
ask_btn.click(fn=send_transcript_to_assistant,
inputs=[voice_transcript, chat_state, thread_state, image_state, client_id],
outputs=[user_prompt, chat, thread_state, image_state])
clear_chat_btn.click(fn=clear_chat_and_transcript,
inputs=[client_id],
outputs=[chat, voice_transcript, thread_state, image_state])
app.load(fn=create_ws, outputs=[client_id])
app.launch()