Spaces:
Sleeping
Sleeping
File size: 7,950 Bytes
9457397 fa361c9 b106fa1 9457397 fa361c9 e24f5bc fa361c9 f5736a5 bafde5e fa361c9 2e95bed bafde5e 9457397 fa361c9 bafde5e fa361c9 9457397 e4de5ab e24f5bc 9457397 e24f5bc 65aa40f 9457397 e24f5bc 9457397 fa361c9 e24f5bc fa361c9 e24f5bc fa361c9 e24f5bc d69e46f 9457397 fa361c9 9457397 c9731af fa361c9 e24f5bc fa361c9 860955f fa361c9 860955f fa361c9 e24f5bc 6a70fff fa361c9 dbf9e7a eb248c8 fa361c9 2e95bed fa361c9 2e95bed fa361c9 bafde5e fa361c9 dda2dda d69e46f 65aa40f d69e46f bafde5e fa361c9 860955f 65aa40f 860955f 65aa40f dbf9e7a fa361c9 dda2dda 860955f dacdb50 860955f dacdb50 860955f c9731af 860955f c9731af 860955f c9731af 860955f c9731af dda2dda fa361c9 d69e46f fa361c9 d69e46f dda2dda d69e46f 65aa40f c9731af 65aa40f 5338b7d d69e46f dacdb50 d69e46f dbf9e7a fa361c9 dbf9e7a 860955f 5338b7d 860955f 5338b7d 860955f 5338b7d 860955f d69e46f fa361c9 65aa40f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import os, time, re, json, base64, asyncio, threading, uuid, io
import numpy as np
import soundfile as sf
from pydub import AudioSegment
from openai import OpenAI
from websockets import connect
from dotenv import load_dotenv
# Load secrets
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID")
client = OpenAI(api_key=OPENAI_API_KEY)
HEADERS = {"Authorization": f"Bearer {OPENAI_API_KEY}", "OpenAI-Beta": "realtime=v1"}
WS_URI = "wss://api.openai.com/v1/realtime?intent=transcription"
connections = {}
# WebSocket Client
class WebSocketClient:
def __init__(self, uri, headers, client_id):
self.uri = uri
self.headers = headers
self.client_id = client_id
self.websocket = None
self.queue = asyncio.Queue(maxsize=10)
self.transcript = ""
self.loop = asyncio.new_event_loop()
async def connect(self):
try:
self.websocket = await connect(self.uri, additional_headers=self.headers)
with open("openai_transcription_settings.json", "r") as f:
await self.websocket.send(f.read())
await asyncio.gather(self.receive_messages(), self.send_audio_chunks())
except Exception as e:
print(f"🔴 WebSocket Connection Failed: {e}")
def run(self):
asyncio.set_event_loop(self.loop)
self.loop.run_until_complete(self.connect())
def enqueue_audio_chunk(self, sr, arr):
if not self.queue.full():
asyncio.run_coroutine_threadsafe(self.queue.put((sr, arr)), self.loop)
async def send_audio_chunks(self):
while True:
sr, arr = await self.queue.get()
if arr.ndim > 1:
arr = arr.mean(axis=1)
if np.max(np.abs(arr)) > 0:
arr = arr / np.max(np.abs(arr))
int16 = (arr * 32767).astype(np.int16)
buf = io.BytesIO()
sf.write(buf, int16, sr, format='WAV', subtype='PCM_16')
audio = AudioSegment.from_file(buf, format="wav").set_frame_rate(24000)
out = io.BytesIO()
audio.export(out, format="wav")
out.seek(0)
await self.websocket.send(json.dumps({
"type": "input_audio_buffer.append",
"audio": base64.b64encode(out.read()).decode()
}))
async def receive_messages(self):
async for msg in self.websocket:
data = json.loads(msg)
if data["type"] == "conversation.item.input_audio_transcription.delta":
self.transcript += data["delta"]
# Connection manager
def create_ws():
cid = str(uuid.uuid4())
client = WebSocketClient(WS_URI, HEADERS, cid)
threading.Thread(target=client.run, daemon=True).start()
connections[cid] = client
return cid
def send_audio(chunk, cid):
if not cid or cid not in connections:
return "Connecting..."
sr, arr = chunk
if len(connections[cid].transcript) > 1000:
connections[cid].transcript = ""
connections[cid].enqueue_audio_chunk(sr, arr)
return connections[cid].transcript.strip()
def clear_transcript(cid):
if cid in connections:
connections[cid].transcript = ""
return ""
def handle_chat(user_input, history, thread_id, image_url):
if not OPENAI_API_KEY or not ASSISTANT_ID:
return "❌ Missing secrets!", history, thread_id, image_url
try:
if thread_id is None:
thread = client.beta.threads.create()
thread_id = thread.id
client.beta.threads.messages.create(thread_id=thread_id, role="user", content=user_input)
run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=ASSISTANT_ID)
while True:
status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
if status.status == "completed": break
time.sleep(1)
msgs = client.beta.threads.messages.list(thread_id=thread_id)
for msg in reversed(msgs.data):
if msg.role == "assistant":
content = msg.content[0].text.value
history.append({"role": "user", "content": user_input})
history.append({"role": "assistant", "content": content})
match = re.search(
r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png',
content
)
if match: image_url = match.group(0)
break
return "", history, thread_id, image_url
except Exception as e:
return f"❌ {e}", history, thread_id, image_url
def send_transcript_to_assistant(transcript, history, thread_id, image_url, cid):
if not transcript.strip():
return gr.update(), history, thread_id, image_url
if cid in connections:
connections[cid].transcript = ""
return handle_chat(transcript, history, thread_id, image_url)
def clear_chat_and_transcript(client_id):
if client_id in connections:
connections[client_id].transcript = ""
return [], "", None, None
# UI
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# 📄 Document AI Assistant")
gr.HTML("""
<style>
#ask-btn, #clear-chat-btn, #record-audio button {
font-size: 16px !important;
padding: 12px 28px !important;
border-radius: 6px;
margin-top: 10px;
background-color: #f2f2f2 !important;
color: #000 !important;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
button {
margin-right: 8px;
}
/* Hide icon (optional) */
#record-audio button svg {
margin-right: 6px;
}
/* Hide internal label if redundant */
#record-audio label {
display: none;
}
</style>
""")
chat_state = gr.State([])
thread_state = gr.State()
image_state = gr.State()
client_id = gr.State()
with gr.Row(equal_height=True):
with gr.Column(scale=1):
image_display = gr.Image(label="🖼️ Document", type="filepath", show_download_button=False)
with gr.Column(scale=2):
chat = gr.Chatbot(label="💬 Chat", height=460, type="messages")
with gr.Row():
user_prompt = gr.Textbox(placeholder="Ask your question...", show_label=False, scale=6)
send_btn = gr.Button("Send", variant="primary", scale=2)
with gr.Accordion("🎤 Voice Transcription", open=False) as voice_section:
gr.Markdown("**🎙️ Tap below to record your voice**")
voice_input = gr.Audio(label="", streaming=True, elem_id="record-audio")
voice_transcript = gr.Textbox(label="Transcript", lines=2, interactive=False)
with gr.Row():
ask_btn = gr.Button("🟢 Ask", elem_id="ask-btn")
clear_chat_btn = gr.Button("🧹 Clear Chat", elem_id="clear-chat-btn")
# Bindings
send_btn.click(fn=handle_chat,
inputs=[user_prompt, chat_state, thread_state, image_state],
outputs=[user_prompt, chat, thread_state, image_state])
image_state.change(fn=lambda x: x, inputs=image_state, outputs=image_display)
voice_input.stream(fn=send_audio, inputs=[voice_input, client_id], outputs=voice_transcript, stream_every=0.5)
ask_btn.click(fn=send_transcript_to_assistant,
inputs=[voice_transcript, chat_state, thread_state, image_state, client_id],
outputs=[user_prompt, chat, thread_state, image_state])
clear_chat_btn.click(fn=clear_chat_and_transcript,
inputs=[client_id],
outputs=[chat, voice_transcript, thread_state, image_state])
app.load(fn=create_ws, outputs=[client_id])
app.launch()
|