NLSQL / app.py
HusnaManakkot's picture
Update app.py
d82d943 verified
raw
history blame
1.39 kB
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
from datasets import load_dataset
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
model = AutoModelForSeq2SeqLM.from_pretrained("hrshtsharma2012/NL2SQL-Picard-final")
# Initialize the pipeline
nl2sql_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer)
# Load a part of the WikiSQL dataset
wikisql_dataset = load_dataset("wikisql", split='train[:5]')
def generate_sql(query):
results = nl2sql_pipeline(query)
sql_query = results[0]['generated_text']
# Post-process the output to ensure it's a valid SQL query
sql_query = sql_query.replace('<pad>', '').replace('</s>', '').strip()
return sql_query
# Use examples from the WikiSQL dataset
example_questions = [(question['question'],) for question in wikisql_dataset]
# Create a Gradio interface
interface = gr.Interface(
fn=generate_sql,
inputs=gr.Textbox(lines=2, placeholder="Enter your natural language query here..."),
outputs="text",
examples=example_questions,
title="NL to SQL with Picard",
description="This model converts natural language queries into SQL using the WikiSQL dataset. Try one of the example questions or enter your own!"
)
# Launch the app
if __name__ == "__main__":
interface.launch()